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Chapter 1

Introduction

1.1 What is NLP?

• Analysis of a natural language (wait, what’s a natural language)

• Generation of a natural language

• Sometimes both analysis and generation

• Representation of a natural language (but usually in the service of generation and/or
analysis)

1.1.1 Super Brief History of NLP

• NLP was indistinguishable from MT for a long time for some weird reason

• Athanasius Kircher – ‘polygraphy’ (1630) for translation without understanding

– side note: kircher is really weird guy! he

– incorrectly deciphered hieroglyphics

– Went into Vesuvius’ erupting crater for his geology research

– invented a cat piano

– check him out at the Museum of Jurassic Technology just outside Culver City

• Becher mechanical meta-language for language-to-meaning (in the service of NLP):

1666

1



• Georges Artsruni mechanical brain (1930)

• Computers proposed for translation (1949...3 years after computer invented)

• ACL founded (as the “Association for Machine Translation”) in 1962

1.1.2 Applications

• Chatbots

• customer service agents

• Question Answering (search)

• Translation

• Grammar Correction

• Summarization

• Article Writing

• Opinion/sentiment analysis

• essay evaluation/plagiarism detection

• Knowledge base construction

• author identification

• ...

1.1.3 A Dialogue of the near-future

human: Can you get me a table at N/Naka tomorrow at 7?
ai: How many?
h: Four of us.
a: Sorry, there’s nothing at 7 PM. They have an opening at 10 PM.
h: Ugh, thats sort of late. What about Sakura?
a: Sakura has an opening at 9:30 PM.
h: Can you email Brooke, Mike, and Liz, and asdk if 9:30 is too late?
a: OK, email sent.
a: Liz says it’s fine.
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h: OK, let’s book the table at Sakura.
a: OK, all set for 4 people at 9:30 PM.

[some time later...]
h: You know what, just take the N/Naka one at 10 PM.
a: OK, N/Naka is booked at 10 PM for 4 people and I cancelled the reservation at

Sakura.

What parts of this conversation are possible with NLP tech today (cf. Google Duplex
demo)? Which aren’t? Which seem likely to be coming soon, based on your intuition?

1.1.4 Find the following NL ‘tasks’ in the above dialogue, or see
where they would be useful

• Spelling Correction

• Named Entity Information Extraction

• Question Answering

• Coreference Resolution

• Grounding

• Ambiguity Resolution

• Summarization

• Information Retrieval

• Generation

• Translation

1.1.5 Connections to Other Areas

• Machine Learning – the biggie, now. NLP: ML is a tool we use. ML: NLP is a data
set we use.

• Linguistics – for ML folks think of this as ‘guided search’ both within a problem and
when considering what the problems are. But also consider we are trying to understand
language and can use NLP/CL techniques to do so

• Cognitive Science / Psychology – see also Linguistics, but a level up. We are fascinated
by humans’ ability to learn language that is far better than computers’ and we’re not
quite sure why this is. We probably won’t get into real cog sci/psych theories, though

• information theory – language is a means by which humans communicate and the
communication capacity/compression/confusability of communications is baked in to
our studies, particularly when discussing (cross-)entropy and mutual information
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• theory of computation – very important for search over complex spaces (e.g. for a
syntactic tree or semantic graph) and for recognizing what transformations are and
are not possible. Strongly connected via chomsky hierarchy, of which we’ll only talk a
little

• data science, political science, etc. – NLP: these are good subdomains to try our stuff.
X science: NLP is a good tool to demonstrate my theories

• Other areas you’re interested in not covered here?

1.2 Linguistic Stack – from low to high ambiguity (from

shallow to deep)

• pre-text (speech channel)

– phonetics – what mouth sound has been produced?

∗ [l] = alveolar lateral approximant (lace)

∗ [R] = alveolar tap (race)

∗ [r] = alveolar trill (rey (Spanish))

– phonology – what are the meaningfully distinct sounds (governed by each lan-
guage)?

∗ English: [R] vs. [r] conflated

∗ Japanese: [R] vs. [r] vs. [l] conflated

∗ Hindi: d” (dental) vs. d”H (dental, glottal) distinct, etc.

∗ cf https://en.wikipedia.org/wiki/Hindustani_phonology examples (retroflex
are good ones to confuse my american ears)

• pre-text (vision channel)

– orthography – what makes a character? Particularly difficult when dealing with
unknown writing set, especially handwritten.

–

• morphology – what are the minimal meaning-laden parts of a word that are useful to
distinguish? (Why distinguish? For handling novelty (wug test), collapsing statistics...)

– English is pretty weak here:

– inflection: ‘talks’ = ‘talk (verb) + s (present 3rd singular)’ or ‘talk (noun) + s
(plural).
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– Turkish agglutination: uygarlaştıramadıklarımızdanmışsınızcasına = “(behaving)
as if you are among those whom we could not civilize”

• words (lexemes)

– Ok, not really a level but it’s important to recognize what we consider a word,
especially when data processing

– Is a word ‘a single unit of meaning?’ ‘text separated by whitespace?’

– What about Chinese? Or Thai? Or long compounds/agglutinations in Turkish,
German, Finnish?

– What about whitespace-separated units that function noncompositionally (‘New
York’, ‘take out’)?

– What about hyphenated and punctuated text? (Tricky example: ‘New York-New
Haven Railroad’)

• syntax – how to properly put words together to form a sentence

– part-of-speech tags:

– the/DT (determiner) blue/JJ (adjective) boat/NN (noun)

– *boat/NN blue/JJ the/DT

– Constituencies:

– S = NP[the blue boat] VP[sailed home]

– * VP[sailed home] NP[the blue boat]

• semantics – what does a word in a sentence mean, and how do the words meaningfully
relate to each other?

– Consider the sentence ‘The soldier did not want to die.’

– What is meant by ‘want’ – desire? lack?

– Who is doing the wanting? Who is doing the dying? What is (not) wanted?

–

• pragmatics – what does the speaker (as opposed to the sentence) mean in conversational
context?

human: Can you get me a table at N/Naka tomorrow at 7?

*ai: Yes, I have that ability.

ai: OK, your reservation is made.
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• discourse – what information is conveyed subtextually, as a result of context (interpre-
tation of sentence in context to other sentence or sequence, overall intent of text or
dialogue)?

waiter: What would you like for dinner?

diner: I had a heavy lunch.

waiter: Let me tell you about our salads.

1.3 Ambiguity is the enemy of NLP

Humans are seemingly able to integrate lots of context, world knowledge, tone, etc. clues
to clearly disambiguate ‘bank’ and ‘mean’ and ‘latex’, find no problem in deciding to not
pick apart individual meaning in ‘make a decision’ or ‘take out’ or ‘make up’, and can easily
conclude that if you can gronfle sixty milchanks in one hour, then after one minute you will
have gronfled one milchank. Errors in NLP are chiefly due to not having sufficient context.

1.3.1 Funny (English) Examples made less funny by linguistic
analysis – pick out the misinterpreted phenomenon!

• Enraged Cow Injures Farmer With Axe

• Ban on Nude Dancing on Governor’s Desk

• Teacher Strikes Idle Kids

• Hospitals are Sued by 7 Foot Doctors

• Iraqi Head Seeks Arms

• Stolen Painting Found by Tree

• Kids Make Nutritious Snacks

• Local HS Dropouts Cut in Half

• Dinosaurs didn’t read. Now they are extinct.

1.3.2 Issues in ambiguity, richness

“We saw the woman with the telescope wrapped in paper” – who has the telescope? What
is the paper wrapping? Is this perception or assault? Humans have two major readings of
this (why?) but it’s hard to keep computers from considering the unlikely ones unlikely.

“Every fifteen minutes a woman in this country gives birth. Our job is to find that
woman, and stop her!” Groucho Marx – ambiguity of semantics (‘a woman’)

‘The soldier was not afraid to die’ vs ‘The soldier did not fear death.’ – There are lots of
ways to express the same thing and to us this is not an issue, but without proper intervention
these are completely distinct sentences to a computer model.
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Humans often produce intentionally obfuscated language, possibly to only target a sub-
group. These obfuscations can change very quickly; it’s tough to keep up! There are good
reasons to keep up! Examples:

• Call me at six niner i three triple 0 dos

• u ship them? smh. ikr, lolol, yolo.

• 14 words now and then 88 later if u want

1.4 Structure Of the class

• The overall structure of learning is:

– a tiny bit of linguistics

– a refresher on probability you should know

– mini-course on important aspects of machine learning (linear models, nonlinear
models)

– discussion of data

– discussion of evaluation

– some core techniques oriented toward parts of the linguistic stack

– various end-goal subfields (MT, IE, Dialogue, maybe QA)

• I also want you to get experienced digesting the latest papers and to break the class
up a bit so I’m not lecturing the whole time. Everybody will choose one paper from
NAACL 2021 https://aclanthology.org/events/naacl-2021/ and will make a 15-
minute presentation on it in class. (You can’t present your own work, BTW.) We’ll
all read the paper ahead of time and engage in active discussion on the paper using
piazza and in-class.

• Based on class interest we can add or subtract topics, especially near the end of the
class.

• There are three HW assignments and a project. As shown below, the majority of your
effort should be in writing clearly and communicating what you have done.

1.5 Evaluation

• no punishment curve (but a reward curve if needed);

• be an active, engaged participant and do all the work and an A is easy to get.
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1.5.1 Homeworks – 3x10% = 30% total

• Expect substantial programming in most (if not all) of them

• Coding should be strictly in Python – in some cases we may provide useful templates
for parts of the assignment.

• Writeups should be strictly in LATEX; learn how to use it now (if you don’t already)!

• Communicate well; write clearly and simply, use appropriate figures and graphs.

• There will be an expectation of self-exploration, reading papers to get good ideas to
reimplement or build upon.

• ALL CODE MUST BE YOUR OWN AND MAY NOT BE COPIED which
includes solutions you find on the web and code from others in the class. We run
code-checking software; it is smart enough to defeat attempts to obfuscate, and I take
cheating very seriously (see below).

• Grading (approximate and totally subjective) presuming that you actually did what
was asked:

– about 50% – did you clearly communicate your description of what you imple-
mented, how you implemented it, what your experiments were, and what conclu-
sions you drew from them? This includes appropriate use of graphics and tables
where warranted that clearly explain your point. This also includes well written
explanations that tell a compelling story. Grammar and syntax are a small part
of this (maybe 5%) but much more important is the narrative you tell. Also a
part of this is that you clearly acknowledged your sources and influences with
appropriate bibliography and, where relevant, cited influencing prior work.

– about 20% – is your code correct? Did you implement what was asked for, and
did you do it correctly?

– about 20% – is your code well-written, documented, and robust? Will it run from
a different directory than the one you ran it in? Does it rely on hard-codes? Is
it commented and structured such that we can read it and understand what you
are doing?

– about 10% – did you go the extra mile? Did you push beyond what was asked
for in the assignment, trying new models, features, or approaches? Did you
use motivation (and document appropriately) from another researcher trying the
same problem or from an unrelated but transferrable other paper? THIS IS
NOT EXTRA CREDIT! YOU CANNOT RECEIVE 100% WITHOUT
COMPLETING THIS PART!. There is no extra credit on homeworks.

1.5.2 In-class paper presentation = 10%

• The schedule contains paper listings under “presentation”; everyone will sign up for
(at least one) NAACL 2021 paper to present to the class and lead discussion (approx
15 minutes presentation, 5-10 minutes discussion, but this is flexible)
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• Everyone will read the papers (see below) and prepare questions ahead of time to
facilitate discussion

• You will explain the paper, getting into key details and insights as well as the context
of the paper (you may have to look at key papers that cited this paper as well as key
influential works that the paper cites)

• Slides or a handout may be helpful and are a good idea but are not mandatory

• Submit your top 3 papers as a response to a poll we will send; we’ll do our best to give
everyone their top choice but can’t promise. If you don’t pick one we’ll pick for you!

1.5.3 Project—5% (proposal) + 5% (version 1 of report) + 10%
(final presentation) + 20%(final report) = 40%

• Two people per project

• Reproduce results in an ACL 2021 paper

• Write up your results clearly

• Proposal is due in two weeks from the beginning of class!

1.5.4 Pre-written paper presentation questions for others’ presentations—
10/(N-1)% x N-1 = 10%

• Before the class in which a presentation is going to be given (i.e. in 2020, by 9:59
am Pacific time on the day of the class), post at least one question regarding each
presentation (usually 1 but occasionally 2) to the appropriate location on piazza.

• During the presentation, if the question isn’t answered or isn’t answered sufficiently,
bring it up and engage in discussion with the class.

• There probably won’t be enough time for everyone; if the question is unresolved it
should be discussed on piazza (after or before the presentation)

• The main goal of this is to ensure that you’ve read the papers and are engaging in
discussion.

1.5.5 Other class participation—10%

• Ask general questions in class, engage in discussion

• Ask questions and engage in discussion on piazza – answer each others’ questions before
instructors weigh in

• Propose topics to cover
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• Ask questions of fellow students during project presentations

• Answer questions when I call on you and be in class (occasional absences understand-
able).

1.5.6 Late Days

• Work is done at 11:59:59 anywhere on earth (=4 AM the next day, for PST) on the
announced due date (except for the final report).

• You get four cumulative late days for homeworks and project proposals (no late days
for final project report or missed presentations). Thereafter, 20% off per day.

• Late group project proposals will deduct from both team members’ late day accounts.

1.5.7 Office Hours

• 2021: Mine are 2pm–3pm before class, in SAL 311 (or on zoom).

• Elan’s are TBD

• Come bounce ideas off of us (particularly related to project proposal/project)

1.6 Don’t Cheat

• Read the USC honor code; it applies, and I will abide by it.

• All work you turn in should be your own.

• This includes anything written and all code.

• All work must be originally done for this class by you. Self-plagiarizing is still
plagiarizing!

• That means that if you have done any of these assignments before in a previous class,
you should either not look at your previous work, or (better) come talk to me and I
will give you an alternate assignment

• Similarly, for the project, you may not re-present a research project or paper you have
previously worked on or are currently working on; this should be entirely new work.

• If we have determined you have violated the honor code we will invoke punishments
as deemed necessary; this can mean a zero on an assignment, a reduced letter grade in
the class, or even a failing grade. Punishments can occur at any time after violations
(usually at the worst possible time). I hate doing this but I will if necessary (ask
around).

This is intended to be a fairly comprehensive list of policies and provisions but something
may have been missed; other policies or changes to existing policy may be announced and
will supersede any conflicting statements made here.
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Chapter 2

Probability

2.1 Definitions

• Experiment: Some action that takes place in the world

• Outcomes = Sample Space = Ω = the universe, every basic outcome that could happen

• Event = A ⊆ Ω = something that happened (could be more than one basic outcome

• Probability Distribution = P : Ω→ [0, 1],
∑

x∈Ω P (x) = 1, i.e. values sum to 1 and no
value is negative

2.2 Example

• Experiment = “toss a coin three times”

• Ω = {HHH,HHT,HTT,HTH, THH, THT, TTT, TTH}

• Event A = “exactly two heads” = {HHT,HTH, THH}

• Event B = “first one was heads” = {HHH,HHT,HTT,HTH}

• Distribution: assign a number between 0 and 1 (‘probability’) to each basic outcome1;
sum of all such numbers = 1

• Uniform Distribution: define P (x) = c∀c ∈ Ω...in this case?

• Probability of an event = sum of the probability of its basic outcomes

• So, P (A) =? and P (B) =?

1actually to each event in a partition but we’ll get back to that in a minute
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2.3 Joint and Conditional Probability

P (A,B) = P (A ∩ B) = ‘joint probability of A and B’, i.e. probability of the event formed
by the intersection operation (can think of it as probability of ‘the joint event’

P (A|B) = P (A∩B)
P (B)

= ‘conditional probability of A given B’, i.e. the joint event above,
assuming that B is Ω

So P (A) = 3/8, and P (B) = 1/2
P (A,B) = P (A) + P (B)? (No. What is it?)
P (B|A) = “if you’ve got two heads what’s the chance your first was heads” = ?
P (A|B) = “if your first is heads what’s the chance you’ve got two” = ?

2.4 Chain Rule of Probability

(Not to be confused with the chain rule of Calculus)

Since P (A|B) = P (A,B)
P (B)

(by definition), we can rewrite terms to get P (A,B) = P (A|B)P (B).
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Now consider three events, A1, A2, A3. How can we define P (A1, A2, A3) = P (A1 ∩A2 ∩
A3) in terms of conditional probabilities?

Recall that an event is just a set of basic outcomes. So let’s define a new event

A23 = A2 ∩ A3

.
Then we would write

P (A1, A23) = P (A1|A23)P (A23)

.
Now, substitute back in the joint event that A23 represents

P (A1, A2, A3) = P (A1|A2, A3)P (A2, A3)

.
Now substitute the definition of joint probabilities in terms of conditional probabilities

again

P (A1, A2, A3) = P (A1|A2, A3)P (A2|A3)P (A3)

.
Of course P (A1, A2, A3) = P (A3, A2, A1) (set intersection is commutative) so you could

write this instead as P (A3|A2, A1)P (A2|A1)P (A1)
The general chain rule for probabilities is:

P (A1, . . . , AN) = P (A1|A2, . . . , AN)× . . .× P (AN−1|AN)× P (AN)

2.5 Independence

A and B are independent if the occurrence of one does not affect the occurrence of the other,
i.e. if P (A|B) = P (A). Corollary: P (B|A) = P (B). Corollary: P (A,B) = P (A)P (B).
Exercise: Prove that these three statements are corollaries of each other.
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2.6 Bayes’ Rule/Theorem/Law

P (A|B) = P (A,B)
P (B)

, by definition. Thus, P (A,B) = P (A|B)P (B).

Because intersection is commutative (see above), P (A,B) = P (B|A)P (A). This also
explains the corollary noted in Section 2.5. This leads to Bayes’ Rule/Theorem/Law:

P (A|B) =
P (B|A)P (A)

P (B)

This can be very helpful when you have information about one conditional direction but
you want info about the other direction.

2.7 Law of Total Probability

We say events E1, . . . , En partition Ω if:

∀i, j ∈ [1, n], Ei ∩ Ej = ∅

and

n∑
i=1

P (Ei) = 1

The Law of Total Probability says, given partitioning events E1 . . . En and event B:
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P (B) =
n∑
i=1

P (B,Ei)

2.8 Example

Some people can read minds, but not many: P (MR) = 1/100, 000 = .00001.
There is a test to read minds; if you are a mind reader I can detect this very well:

P (T |MR) = 0.95 and if you’re not I can detect this even better: P (¬T |¬MR) = 0.995.
Note: {T,¬T} partition the event space, as do {MR,¬MR}.

If Jill gets a positive result on the test, how likely is it she is the mind reader?
i.e., P (MR|T ) =?

By Bayes’ Law, P (MR|T ) = P (T |MR)P (MR)
P (T )

.

We need to get P (T ). By law of total probability, P (T ) = P (T,MR) + P (T,¬MR).
By definition of conditional probability, P (T,MR) = P (T |MR)P (MR) = 0.95 × .00001;
P (T,¬MR) = P (T |¬MR)P (¬MR) = 0.005× .99999. P (T ) = .00500945 and P (MR|T ) ≈
.002
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Chapter 3

Ethics Intro

3.1 Why Discuss Ethics in NLP Now?

A lot (all?) of this material comes from UW and CMU courses in NLP ethics. This is not a
full course in the subject, so much will be skipped.

See http://demo.clab.cs.cmu.edu/ethical_nlp/ and http://faculty.washington.

edu/ebender/2017_575/index.html.
We just discussed probability...this seems like a topic jump. It’s important as we get into

the actual details to consider the ethical implications of:

• What we create (power of the models and tasks to do good or harm)

• How we create it (data sets and other ways that biases are implicitly baked into models)

• Why we create it (who is funding the work? How will it be used after it’s made?)

We are dealing with human language which means we are dealing with people.
Nice quote: “The common misconception is that language has to do with words and what

they mean. It doesn’t. It has to do with people and what they mean. “ (Herbert H. Clark
and Michael F. Schober, 1992)

Ethics is broadly ‘what is good/right.’ However, what is good or right? Squishy!!

3.1.1 Example from CMU overview

• Should we design a classifier to predict if a chicken is male or female, while in the egg?

– + Lowers cost of hatching/raising chicks you don’t want (females for eggs, males
for meat)

– + Destroying the eggs may be less painful than killing the unwanted chicks

– - it’s not the chicken’s fault

– ...

• Should we design a classifier to predict IQ of an adult? Of a child? Of a fetus?
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• Positives? Negatives?

• Let’s stick with adults for now.

– Who benefits from this classifier?

– Who can be harmed, even if the classifier is never wrong?

– If the classifier is more accurate for e.g. white women than other groups, who
is responsible for the failings? Developer? Manager/Reviewer? University/Com-
pany? Society?

• NLP increasingly used to make real-world decisions.

– Credit-worthy

– Recommendations (based on some kind of stereotypes)

– self-driving car decisions (more vision than NLP but commands)

– whether to grant parole

• Data collection and annotation is a big part of NLP. Human language necessarily means
human collection

– Unsupervised data: intentional publication (news)? Unintentional publication
(text messages)? Semi-intentional publication (social media)? Monetized publi-
cation (copyright violation)?

– Annotation: Is this considered human subjects research (HSR)? Can it be dis-
tressing to annotators?

– Are providers of data being fairly compensated? (Mechanical Turk, scraping
against copyright, etc.)

– Are these limits altering the demographic distribution of the data, and what are
the consequences with regard to model performance?

• Issues to consider throughout this course:

– How can this be used?

– How might this be used?

– What are the consequences of this use? Who will be affected? Who won’t be able
to take advantage?

– Who has interest (ownership or otherwise) of the data you will use?

• The answer is probably not ‘abandon everything you are doing here.’ And I don’t have
all the answers (and in many cases there is no answer). But it is important to be aware
of these issues.
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Chapter 4

Corpora Processing and Linear
Classifiers (Naive Bayes)

4.1 History of Methodologies

4.1.1 Pre-Statistical (1650s/1950s through approx. 1980s)

• Mostly about modeling specific linguistic phenomena in a small number of sentences,
sometimes using code

• Linguists/highly trained coders wrote down fine-grained detailed rules to capture var-
ious aspects, e.g. ‘ “swallow” is a verb of ingestion, taking an animate subject and a
physical object that is edible...’

• Very time-consuming, expensive, limited coverage (brittle), but high precision

• Academically satisfying, but not good at producing systems beyond the demo phase

4.1.2 Statistical

• Empirical approach: learn by observing language as it’s used “in the wild”

• Many different names:

– Corpus Linguistics

– Empirical NLP

– Statistical NLP

• Central tool:

– corpus

– thing to count with (i.e. statistics)

– (later on) machine learning methodologies, software/hardware for helping with
scale
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• Advantages

– Generalize patterns as they actually exist (i.e. bottom-up, not top-down)

– Little need for knowledge (just count)

– Systems are robust and adaptable (change domain by changing corpus)

– Systems degrade more gracefully (corner cases captured in data)

– Evaluations are (more) meaningful

• Limitations

– Bound by data – can’t model what you can’t see – “I held the book with my arm
stretched out and opened my hand. It (floated away), (fell to the ground)”

– Big Data methods fail when the data is small or wrong – sometimes you want
to try to translate Oromo news to English with 50,000 words of bible when you
want 10m+words of news

– more computationally expensive (but less human-expensive) (usually a good trade-
off)

– Methods don’t have the same pattern-recognition and generalization abilities of
humans learning (and putting into rule-based methods) which can lead to unin-
tuitive brittleness.

4.1.3 Corpus (pl: corpora): a collection of (natural language) text
systematically gathered and organized in some manner

• Features:

– Size

– Balanced/domain

– Written/Spoken

– Raw/Annotated

– Free/Pay

• Some Famous (text) examples:

– Brown Corpus: 1m words balanced English text, POS tags

– Wall Street Journal: 1m words English news text, syntax trees

– Canadian Hansards: 10m words French/English parliamentary text, aligned at
sentence level

– Wikipedia (all of it): 3b words

– Google books ngrams: 500B words

– Common Crawl: 1T words

– Any others of particular interest?
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4.1.4 How Big Does it need to be?

• We’d like to get examples of all linguistic phenomena, ideally several times so we know
how likely they are to occur

• How big should a corpus be to get every possible sentence in English?

– Every possible idea?

– Every 5-word phrase?

– Every word?

• None of these are possible!

4.1.5 corpus processing

# word counts and ngram counts

# 10 most frequent words in the text

sed ’s/ /\n/g’ sawyr11.txt | sort | uniq -c | sort -k1nr | head

# 10 most frequent words in the text after removing blank lines

sed ’s/ /\n/g’ sawyr11.txt | grep -v "^$" | sort | uniq -c | sort -k1nr | head

# 10 most frequent bigrams (2 word sequences) in the text

sed ’s/ /\n/g’ sawyr11.txt | grep -v "^$" > ts.words

tail -n+2 ts.words > ts.2pos

paste ts.words ts.2pos | sort | uniq -c | sort -k1nr | head

# count number of words/ngrams, number of word/ngram types, number of

# 1-count word/ngram types

# words in the text without blank lines, one word per line, saved to a file

# (for convenience)

sed ’s/ /\n/g’ sawyr11.txt | grep -v "^$" > ts.words

# number of word tokens

wc -l ts.words

# number of word types

sort ts.words | uniq | wc -l

# number of one-count words

sort ts.words | uniq -c | awk ’$1==1{print}’ | wc -l

# number of two-word sequence (bigram) tokens

# (based on the answer to the number of word tokens you should know this

# without running the command...

paste ts.words <(tail -n+2 ts.words) | wc -l

# number of bigram types

paste ts.words <(tail -n+2 ts.words) | sort | uniq | wc -l

# number of one-count bigrams

paste ts.words <(tail -n+2 ts.words) | sort | uniq -c | awk ’$1==1{print}’ | wc -l
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4.1.6 Zipf’s law

Take a naturally occurring corpus (in this case, of text). Count frequency of words. Order
words by frequency, to form ranks. Then the rank of a word is inversely proportional to its
frequency.

For frequency f and rank k, f ≈ 1
ka

for some constant a. Thus −a ≈ log(f)
log(k)

.
Consequences:

• There will always be a lot of infrequent or unseen words

• This is true at all levels of linguistic structure

• So we have to find clever ways of generalizing so we can get reasonable estimates for
things we haven’t seen often enough

4.2 Nominal task (also HW1): text classifier

We have some book reviews. We want to know automatically if they’re positive or negative.
Positive review:

I loved this book. The food was really good and fast (which is good

because I have a very packed schedule). Also great if you’re on a

budget. The recipes have variations so I could eat different things but

not have to buy a whole new set of ingrediants.

Negative review:

I tried reading this book but found it so turgid and poorly written that

I put it down in frustration. It reads like a translation from another

language by an academic bureacrat. The theme is interesting, the

execution poor. Cannot recommend
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4.2.1 Evaluation

We should always ask ‘how do we know we are doing well at what we are trying to do?’ This
time the answer is fairly simple (it won’t always be). We collect many reviews along with
their labels (Positive/Negative, which we may have to create out of some other labels, like a
numerical score).

We’ll calculate simple accuracy :
# correct
# total

.

4.2.2 Data

We will divide our data into train, development (dev) (also sometimes called ‘validation’)
and test corpora. train is used to build a model and is the largest data set (usually 80% of
the data). dev is not used to train but is frequently consulted during optimization (where
relevant) to avoid overfitting on training data. test is usually not evaluated or looked at
except for when optimization is done, to ensure even less overfitting. Sometimes an even
more super-secret blind test set is not even available to you but held off to test your final
model.

4.2.3 Framework

Here’s a simple framework for this problem:

import operator
def eva luate ( sentence , option , model ) :

# f i l l me in
pass

def c l a s s i f y ( sentence , opt ions , model ) :
s c o r e s = {}
for opt ion in opt ions :

s c o r e s [ opt ion ] = eva luate ( sentence , option , model )
return max( s c o r e s . i tems ( ) , key=operator . i t emge t t e r ( 1 ) ) [ 0 ]

Let’s consider methods for the ‘evaluate’ function:

4.3 Rule-Based (top-down?) Model

Positive reviews should have positive words, negative reviews should have negative words.
Thankfully, people have compiled such sentiment lexicons for English. See http://www.

enchantedlearning.com/wordlist.
Positive words example: {absolutely, adorable, bountiful, bounty, cheery}
Negative words example: {angry, abysmal, bemoan, callous}
Let’s put the intuition and data together:

# e x t e r n a l l y c o n s t r u c t e d ; don ’ t a c t u a l l y s t r u c t u r e your code t h i s way
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# p r o b a b l y shouldn ’ t s t r u c t u r e your code t h i s way . . .
model = {}
model [ ’ good ’ ] = set ( [ ’ yay ’ , ’ l ove ’ , . . . ] )
model [ ’ bad ’ ] = set ( [ ’ t e r r i b l e ’ , ’ boo ’ , . . . ] )

def eva luate ( sentence , option , model ) :
s c o r e = 0
for word in sentence . s p l i t ( ) :

i f word in model [ opt ion ] :
s c o r e+=1

return s co r e

4.4 Empirical Model

Our intuitions about word sentiment aren’t perfect and neither are those of the people who
made the word list. But we do have many examples of reviews and their sentiments. So we
can make our own list of good and bad words. Instead of hard-coding the model as I did
above, we can create a training function that takes in sentences with their labels and then
returns a model:

from c o l l e c t i o n s import Counter , d e f a u l t d i c t
def t r a i n ( l a b e l e d s e n t e n c e s ) :

s c o r e s = d e f a u l t d i c t (lambda : Counter ( ) ) # doub ly nes ted s t r u c t u r e
for sentence , l a b e l in l a b e l e d s e n t e n c e s :

for word in sentence . s p l i t ( ) :
s c o r e s [ word ] [ l a b e l ]+=1

model = d e f a u l t d i c t (lambda : set ( ) )
for word , t ab l e in s c o r e s . i tems ( ) :

# the most f r e q u e n t l a b e l a s s o c i a t e d wi th the word
l a b e l = max( t ab l e . i tems ( ) , key=operator . i t emge t t e r ( 1 ) ) [ 0 ]
model [ l a b e l ] . add ( word )

return model

We now have our first supervised model. We should back up and consider what we are
actually trying to model from a probabilistic view. For one thing let’s consider the actual
probability of each label, rather than our ad-hoc adding method above.

Our classifier should choose argmaxy P (y|s) for sentence s where y is one of a fixed set
of labels. But we didn’t consider s as some monotone thing; we considered the occurrence
of each word as an event.

So we’ll make an assumption called the bag of words assumption which is that for sentence
s = w1w2 . . . wn, we say P (y|s) = P (y|w1, w2, . . . , wn). Note this now doesn’t depend on the
order of the words.1

1This assumption isn’t really part of Naive Bayes, it’s an assumption about the feature set being used.
It’s probably better to say that for x, y, we calculate f(x, y) = f1, . . . , fn and then proceed from there. The
above is a bit of a simplification. The reading avoids this simplification.
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But this model will only be valid if we can calculate probabilities of a label for the exact
multiset of each sentence’s words. We need another assumption, the Naive Bayes assumption
which is that the probability of a label given a word is conditionally independent of the other
words.

Note from Bayes’ rule:

P (y|w1, w2, . . . , wn) =
P (w1, w2, . . . , wn|y)P (y)

P (w1, w2, . . . , wn)

and since the word sequence itself is constant, we can say

argmaxy P (y|w1, w2, . . . , wn) = argmaxy P (w1, w2, . . . , wn|y)P (y)

The conditional probability assumption, which makes up the Naive Bayes assumption,
can then be applied, so we assume

P (w1, w2, . . . , wn|y)P (y) = P (w1|y)P (w2|y), . . . , P (wn|y)P (y)

Is this a good model? George Box, statistician: “All models are wrong, but some models
are useful.”

What are problems with the bag of words assumption?
What are problems with the naive bayes assumption?
Does it work? Yes, for many tasks actually. And it’s very simple so it’s usually worth

trying.
Here’s a new trainer:

from c o l l e c t i o n s import Counter , d e f a u l t d i c t
def t r a i n ( l a b e l e d s e n t e n c e s ) :

wscores = d e f a u l t d i c t ( lambda : Counter ( ) ) # doub ly nes ted s t r u c t u r e
c s c o r e s = Counter ( )
for sentence , l a b e l in l a b e l e d s e n t e n c e s :

for word in sentence . s p l i t ( ) :
wscores [ l a b e l ] [ word]+=1
c s c o r e s [ l a b e l ]+=1

model = { ’ cprobs ’ :{} , ’ wprobs ’ :{}}
for l a b e l in c s c o r e s . keys ( ) :
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model [ ’ cprobs ’ ] . append ( c s c o r e s [ c ] / len ( l a b e l e d s e n t e n c e s ) )
wprob = {}
for word , s co r e in wscores [ l a b e l ] :

wprob [ word ] = sco r e / c s c o r e s [ l a b e l ]
model [ ’ wprobs ’ ] . append ( wprob )

return model

And a new, more appropriate classifier

def eva luate ( sentence , option , model ) :
s c o r e = model [ ’ cprobs ’ ] [ opt ion ]
for word in sentence . s p l i t ( ) :

s c o r e ∗= model [ ’ wprobs ’ ] [ opt ion ] [ word ]
return s co r e

4.4.1 Practicalities: smoothing

score *= model[’wprobs’][option][word] is going to be problematic if we have never
seen a word with a particular class. Solution: smoothing!

Laplace (add-1) smoothing: assume you’ve seen every word (even words you haven’t seen
before) with every class!

Before (assume 10k words in training set of negative items):
P (amazing|negative) = 0/10, 000 = 0 (seen the word but not with class ’negative’)
P (blargh|negative) = 0/10, 000 = 0 (never seen the word)
Introduce a new term, ’OOV’, and if you haven’t seen your test word during training,

pretend your word is ’OOV’. Then, since you add 1 for each vocabulary word and the OOV
with each class, if your vocabulary size was 500, you now get:

P (amazing|negative) = 1/10, 501
and
P (blargh|negative) = 1/10, 501
You may want to actually introduce some OOV into your training set, by replacing words

that appear fewer than some k times with OOV. This is so that your model can learn how
to behave with OOVs.

4.4.2 Practicalities: underflow

Recall:

for word in sentence . s p l i t ( ) :
s c o r e ∗= model [ ’ wprobs ’ ] [ ’ opt ion ’ ] [ ’ word ’ ]

Sentence may be long! Probabilities may be small! It’s very easy to run into underflow:
try this:
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Thankfully, logs are your friend, because of the following graph of log(x):

So instead rewrite the function as

from math import l og

def eva luate ( sentence , option , model ) :
s c o r e = log ( model [ ’ cprobs ’ ] [ opt ion ] )
for word in sentence . s p l i t ( ) :

s c o r e += log ( model [ ’ wprobs ’ ] [ ’ opt ion ’ ] [ ’ word ’ ] )
return s co r e

(Note the operator change)
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Chapter 5

Linear Classifiers Continued
(Perceptron & Logistic Regression)

5.1 problems with naive bayes assumption

We tolerated the naive bayes assumption: P (w1, w2, . . . , wn|y)P (y) = P (w1|y)P (w2|y), . . . , P (wn|y)P (y)
because it was useful, but we know that it is incorrect. Let’s take a closer look:

So, by chain rule, P (w1, w2, . . . , wn|y) = P (w1|y, w2, . . . , wn)P (w2|y, w3, . . . , wn) . . . P (wn|y)
but by the Naive Bayes assumption we restrict the conditional to just be y.

Of course, this is wrong! Some words are clearly not conditionally independent of each
other, i.e. P (San|y) 6= P (San|y,Francisco).

A more intuitive example: Imagine if 9/10 people recommended a movie to you. What
if 8 of those 9 didn’t actually see the movie but just repeated whatever the 9th person said
to you?

Naive Bayes may in fact be a decent assumption for the specific case we’ve seen it in,
and for most other words that occur alongside it (except for nearby words), but this is not
the only feature we might care about. In particular we may care about overlapping features
(e.g. the word, the word AND its predecessors/successors, prefix of the word, if the word is
on certain lists of words, etc.

5.2 Representation of features and weights for multi-

class classification (esp. in Eisenstein)

We’re going to talk about features in general but more importantly we’re going to talk about
feature weights, and especially if you’ve taken ML before you may be a bit confused by the
notation in Eisenstein that I will borrow:

Sentence x: ‘This movie rocks’
Label possibilities: ‘Positive (+), Negative (−), Neutral (∅)’
Feature classes: ”number of words” (nW ), ”contains ’happy’” (ch), ”contains word ending

in s” (∗s)
Feature function f :
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f(x,+) = [3, 0, 1, 0, 0, 0, 0, 0, 0]
f(x,∅) = [0, 0, 0, 3, 0, 1, 0, 0, 0]
f(x,−) = [0, 0, 0, 0, 0, 0, 3, 0, 1]
For every feature we assign a weight. In the previous Naive Bayes discussion the features

were all of the form ‘contains x’ for word x (could actually be ‘number of times we see x’),
and the weights were P (x|y) (from the Naive Bayes assumption). As we see above, the
features can be more arbitrary than that. We can arrange our weights in a weight vector,
which by convention we’ll call θ:

θ = [P (nW |+), P (ch|+), P (∗s|+), P (nW |∅), P (ch|∅), P (∗s|∅), P (nW |−), P (ch|−), P (∗s|−)]
So given f and θ we can do ‘inference’ like so:
argmaxy∈Y θ · f(x, y)
Eisenstein uses Ψ(x, y) = θ · f(x, y); I call that the ‘model score’ or ‘model cost’; it’s the

model’s opinion of y being suitable for x.
What about P (y)? Note this is the background probabiliy of the class y. We can include

this as a term that is always on for the set of features associated with class y. It’s called the
‘bias’. So revising the above,

f(x,+) = [3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] and so on...
θ = [P (nW |+), P (ch|+), P (∗s|+), P (+),

P (nW |∅), P (ch|∅), P (∗s|∅), P (∅),
P (nW |−), P (ch|−), P (∗s|−), P (−)]

5.3 perceptron

I called θ ‘weights’ for good reason – who says they have to be probabilities? We can adopt
a ‘trial and error’ approach:

theta = random weights

f o r each sentence , l a b e l in data :
i f we would choose some other l a b e l over the c o r r e c t one :

modify theta so we don ’ t do that
re turn theta

Here it is in a bit more gory detail using the framework from before:

import numpy as np

# note t h a t e v a l u a t e needs to be r e w r i t t e n to be more g e n e r a l ;
# l e f t as an e x e r c i s e to the reader , but shou ld i n c l u d e a f e a t u r e s ( ) method

def t r a i n ( l a b e l e d s e n t e n c e s , opt ions , f e a t s i z e ) :
# shou ld be a b e t t e r way to determine f e a t s i z e
# p r o b a b l y want to i n i t i a l i z e d i f f e r e n t l y
model = { ’ theta ’ : np . random ( f e a t s i z e )}
for i in range ( i t e r a t i o n s ) : # user−determined
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for sentence , l a b e l in l a b e l e d s e n t e n c e s :
hyp = c l a s s i f y ( sentence , opt ions , model )
i f hyp != l a b e l :

model [ ’ theta ’ ] += f e a t u r e s ( sentence , l a b e l )− f e a t u r e s ( sentence , hyp )
return model

Quick illustration: Some feature type f1 has value 2, f2 has value 1, f3 has value 0.
feats f(x, 1) f(x, 2) θ
f11 2 0 0.3
f21 1 0 0.7
f31 0 0 0.8
f12 0 2 -0.2
f22 0 1 2.2
f32 0 0 -.4

Let’s say class 1 is correct. Given the table above, we get the following model costs:
Ψ(x, 1) = 1.3; Ψ(x, 2) = 1.8.
So update θ = θ + f(x, 1)− f(x, 2):
feats f(x, 1) f(x, 2) θ
f11 2 0 2.3
f21 1 0 1.7
f31 0 0 0.8
f12 0 2 -2.2
f22 0 1 1.2
f32 0 0 -.4

Class 2’s weights went down (if they affected the outcome) and class 1’s went up. Now
we get the following model costs:

Ψ(x, 1) = 6.3; Ψ(x, 2) = −3.2.
So the item is correctly classified.
Some things to discuss in the context of machine learning: averaging all θ at the end,

learning rates, batch sizes.

5.4 loss function justification for perceptron

This seemed to work in the demo case above but has a very ad-hoc feel to it. (Side note:
often times models are originally designed in an ad-hoc way and only later is the theory
worked out. The original paper on perceptrons from 1957 has, AFAICT, nothing regarding
the following) Why does this work?

It’s worth considering the loss of the model. Remember, the model conveys an opinion
about how to classify1 that is to some degree untrue. Loss can be thought of as ‘how wrong
the model is.’ For perceptron the loss for item i in a data set is (from Eisenstein):

Lperceptron(θ; x(i), y(i)) = max
y∈Y

θ · f(x(i), y)− θ · f(x(i), y(i))

1or for regression models, the value associated with an input

29



The first term (maxy∈Y θ · f(x(i), y)) is exactly how we pick a label, and the second term
is the model score of the right label. If we picked the right label, the loss is zero. Otherwise,
the model score for the wrong label is higher, and the amount higher is how wrong we are.

Why do we have loss2? Because there’s something wrong with our model, i.e. θ. But we
can change that. How much should we change it? To minimize the loss, of course!

We can take the derivative of L with respect to θ. By adjusting θ in the negative direction
of the gradient we will have a lower loss on our training data.

Let’s assume ŷ is the hypothesis y and that it’s not the true label; what’s the derivative?
Well what’s the equation?

Let’s call f̂ f(x, ŷ) and f f(x, y) (I dropped the superscripts; too hard to type) and
make them subscriptable. Then L = θ1f̂1 − θ1f1 + θ2f̂2 − θ2f2 + . . . + θnf̂n − θnfn. Then
∂L/∂θ1 = f̂1− f1 or to be more vector wise about it, ∂L/∂θ = f̂ − f . So the negative of that
is f − f̂ .

You might wonder ‘isn’t there a closed form of this?’ Yes, there is, basically you need to
take the inverse or pseudo-inverse of your feature matrix (feature vector for each data item).
Why isn’t it used? Because the matrix inversion becomes really slow (O(n2) in general) once
the data gets large.

BTW, another way to look at what the perceptron is doing is finding the separating
hyperplane between correctly and incorrectly labeled samples. This is easiest to visualize in
the binary case:

The weights define a line/plane/hyperplane along which the score is zero; we want all
the correctly and incorrectly labeled examples to be divided by that separator.

5.5 logistic regression

One nice thing about the naive bayes model is that it’s probabilistic, so if your classifier is
one part of a pipeline, you can tell the rest of the pipeline your confidence in your output in a
rational way. Ψ(x, y) has range (−∞,∞) which is less helpful. Another issue with perceptron
is it only is concerned with making sure the correct answer is chosen (in training).

Nobody forced us to keep Ψ(x, y) as the model score. A preferred model score would
be P (y|x), the conditional probability of the output given the input. How do we form a
probability distribution from a set of scores?

2Assuming our data is separable, which see below
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We can’t simply normalize:

Ψ(x, y)∑
y′∈Y Ψ(x, y′)

will not work. Why?
Instead we can use eΨ. why?

So our new model cost will be

eΨ(x,y)∑
y′∈Y e

Ψ(x,y′)
(5.1)

This, by the way, is the ‘softmax’ function that comes up a lot in neural networks. It
does exactly the same job we are trying to do here: convert a set of numbers in the range
(−∞,∞) into a distribution while keeping the ordering the same. In fact, it generally ‘peaks’
the highest number; that’s why this can be thought of as a ‘soft’ form of the ‘max’ operator
(hence the name).

Now that we’ve got a distribution we have a natural loss function we can use: cross-
entropy! H(p, q) , −Ep log q, where Ep is the expected value w/r/t p. Concretely:

H(p, q) = −
∑
x∈X

p(x) log q(x)

Where here, q(x) = q(y|x) = Equation 5.1. From information theory this is the average
number of bits3 needed to identify an item if q is used to identify the item, but p is the
true distribution. So intuitively you want as small a cross-entropy as possible, and that
makes this a natural loss function. But what is p(y|x), the true distribution? A good choice
for supervised learning is to assume that the provided label is the truth and should always
occur and that all other labels should never occur. That means that our calculation of cross
entropy, which will in practice use training set X and label space Y :

−
∑

x,y∈X
∑

y′∈Y p(y
′|x) log q(y′|x)

|X |
becomes

−
∑

x,y∈X log q(y|x)

|X |
3really, nats
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since p(y|x) = 1 and ∀y′ ∈ Y \ y, p(y′|x) = 0.
Now considering a single item and substituting back in Equation 5.1:

− log
exp(θ · f(x, y))∑

y′∈Y exp(θ · f(x, y′))

−θ · f(x, y) + log
∑
y′∈Y

exp(θ · f(x, y′))

Now, the gradient:

∂L/∂θ = −f(x, y) +
1∑

y′′∈Y exp(θ · f(x, y′′))

∑
y′∈Y

exp(θ · f(x, y′))f(x, y′)

= −f(x, y) +
∑
y′∈Y

exp(θ · f(x, y′))∑
y′′∈Y exp(θ · f(x, y′′))

f(x, y′)

= −f(x, y) +
∑
y′∈Y

q(y′|x; θ)f(x, y′)

= −f(x, y) + Eqf(x, y′)

We update by the negative of the gradient, i.e. f(x, y) − Eqf(x, y′). Intuitively, we are
now considering not only how far away each wrong answer is from the right answer, but how
confident we are about each wrong answer. If we have low confidence about an answer it
will affect the loss very little.
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Chapter 6

Nonlinear Classifiers

6.1 Why Nonlinear Models?

The linear models we introduced appear to be very flexible, however they are limited in what
they can capture. Specifically, because the equation θ · f(x, y) is linear, classification cannot
be successful if the data points, when plotted in their feature space, cannot be divided by
a line (or, more generally, a hyperplane). The classic example of this is the xor problem.
Consider this data:

f1 f2 y
1 1 a
1 0 b
0 1 b
0 0 a

0 0.5 1
0

0.5

1

f1

f 2

This 2-label data set is class 1 iff binary features f1 and f2 are both on or both off and
is class −1 otherwise. Try to draw a line that separates the data. It of course can’t be
done. You could of course introduce a new feature XOR(f1, f2) that explicitly captures this
relationship and then the data would be linearly separable. But in general you don’t know
which combinations of features yield separability, which .

You could try a transformation that makes combinations of the weights. Define weights
w11, w21, b1 to map from the old feature space to a new feature g1 and w12, w22, b2 to map
from the old feature space to a new feature g2, such that
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g1 = w11f1 + w21f2 + b1

g2 = w12f1 + w22f2 + b2

Let’s use these as the weights: [
1(w11) −1(w12)
1(w21) −1(w22)

]
and [

−1(b1) 1(b2)
]

(It’s no accident I set these up as a matrix)
That yields:
g1 g2 y
1 -1 a
0 0 b
0 0 b
-1 1 a

−1 0 1
−1

0

1

g1

g 2

It’s still non-separable! This should be no surprise; all a linear transformation can do is
scale, transpose, and rotate the points; it can’t distort them in a way that allows separability.
So we’ll multiply by a non-linear step function:

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

g1 g2 y
1 0 a
0 0 b
0 0 b
0 1 a

Separable!
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0 0.5 1
0

0.5

1

g1

g 2

The point of nonlinear transformations is to enable recombinations of features. We can
make a linear combination of the new features and apply a nonlinearity to get yet another
recombination. This can be done as many times as needed. What’s nice about this is that
we don’t need to specify complicated features any more – if we choose weights properly and
use enough layers we can capture any combinations of the input data.

6.1.1 Obtaining the weights

In logistic regression and perceptron we used gradient descent of the loss on training data
to set weights. We can use the same approach here, though the step function, being non-
differentiable, isn’t an appropriate nonlinear activation function, so we’ll use a similarly
shaped function that is differentiable at every point. First let’s define the model and the
loss. Let x, y be the input feature vector and its label. Let H be the weights matrix and bH

be the bias vector1. The elementwise nonlinear activation function is g(). Thus to get the
transformed vector (or ‘hidden’ features...or even ‘hidden vector’) h:

z = xH + bH

h = g(z)

What are the lengths of x and h? That’s up to you to some degree. Usually the inputs for
x have something to do with the words of the original input.2 We could stick with naive
Bayes features and say x is |V | (vocabulary size)-dimensional, let’s say 50,000, with a count
of frequency in the text of each word. |h| is entirely a design decision. Let’s pick 1000. That
informs the dimensions of H,bH, and everything else calculated above.

We now need to convert into the output space, which should be equal in length to the
number of choices (e.g. for sentiment it could be 2, 3, 5, depending on how the problem is
defined. Let’s say 5.). And we use softmax again, to ensure the output is probabilistic.

` = hO + bO

o = softmax(`)

The loss L is again the cross-entropy loss, which is defined for one data item (x, y) as

1When to use a bias vector? I don’t know, and I see different formulations do different things. For
example, Eisenstein ch. 3.1 doesn’t use bias here but does use bias in the output transform. I will use it in
both places

2They are often, in fact, word embeddings, but we’ll get to that shortly.
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Hx,y(p, q) = −
∑
y′∈Y

p(y′|x) log q(y′|x)

where the distribution q(y′|x) may be represented by o and the true distribution p(y′|x) is
one-hot at y, reducing to − log(oy).

Thus, L ends up being

L = − log(oy)

i.e. the negative log of the probability of the correct answer (denoted oy to note that member
of o corresponding to choice y).

Having calculated L, we update each set of parameters (H,bH,O,bO) by the opposite
of the gradient of L with respect to that variable, i.e:

H← H− λ∂L/∂H

bH ← bH − λ∂L/∂bH

O← O− λ∂L/∂O

bO ← bO − λ∂L/∂bO

where λ is a learning rate. Now how are these partials determined? We start at the loss
equation itself and use simple calculus:

L = − log(oy)

∂L/∂oy = −1/oy

Now consider the definition of oy itself; we can use the chain rule and the local derivative
of oy with respect to `, though softmax is a slightly tricky function to take a derivative of:

∂L/∂` = ∂L/∂oy × ∂oy/∂`

oy =
exp(`y)∑
i exp(`i)

To calculate ∂oy/∂` we will make use of the derivative rule for quotients:

(
f(x)

g(x)
)′ =

g(x)f(x)′ − f(x)g(x)′

g(x)2

It is helpful to consider the application of this rule to ∂oy/∂` in two cases: when i = k
and when i 6= k. Remember that even though oy is a scalar, ` is a vector, so we’re calculating
∂oy/∂`i for every member `i of `.
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[∂oy/∂`]i 6=y =

∑
i′ exp(`i′)× 0− exp(`y) exp(`i)

(
∑

i′ exp(`i′))2

= − exp(`y)∑
i′ exp(`i′)

exp(`i)∑
i′ exp(`i′)

= −oyoi

[∂oy/∂`]y =

∑
i exp(`i) exp(`y)− exp(`y)

2

(
∑

i′ exp(`i′))2

=
exp(`y)∑
i′ exp(`i′)

∑
i exp(`i)− exp(`y)∑

i′ exp(`i′)

= oy(1− oy)

Now we can multiply ∂L/∂oy (−1/oy) with ∂oy/∂` to get ∂L/∂`:

∂L/∂` =

{
oy − 1 i = y

oi otherwise
(6.1)

We next continue on down to find the gradient of L with respect to O and bO, which are
actual parameters we want to learn. We use the definition of ` in terms of these variables
and what we have previously learned:

∂L/∂O = ∂L/∂`× ∂`/∂O
∂L/∂bO = ∂L/∂`× ∂`/∂bO

` = hO + bO

∂`/∂O = h

∂`/∂bO = 1

We can simply multiply ∂L/∂`, which is the complicated value in Equation 6.1, by either
h or (the vector) 1, as noted above. Here it’s worth noting that we want to get the shapes
of our gradient matrices right and that we want to deal with batches of training samples
properly.

Imagine that we are updating parameters after seeing one training instance. Then, ∂L/∂`
is a (1 x 5) vector. h is a (1 x 1000) vector, and we want to update O, which is a (1000 x
5) matrix. Thus we take hT × ∂L/∂` to get the right shape. However note that in general
we do not update after a single training instance; rather there may be some d items in the
minibatch. So in fact ∂L/∂` is a (d x 5) matrix and h is a (d x 1000) matrix. hT × ∂L/∂`
still yields a (1000 x 5) matrix but it is actually the sum of d individual loss calculations.
The point of batch updating is to take a per-item average. Thus the proper update for O

is to subtract (the learning rate times) hT×∂L/∂`
d

. Similarly, to update bO, it is important
to actually multiply ∂L/∂` by a length-5 ones vector, which amounts to summing each
dimension of ∂L/∂` along the batch axis, then divide by d.

If you’ve gotten this far, the rest should be straight-forward. We will need ∂L/∂h, which
is of course ∂L/∂` × ∂`/∂h; the former term is in Equation 6.1 and is (d x 5), the latter is
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simply O, which is (1000 x 5). We calculate as ∂L/∂` × OT to get a (d x 1000) result for
∂L/∂h.

We can now move on to the hidden layer; let’s assume g is ReLu.

∂L/∂z = ∂L/∂h× ∂h/∂z
h = ReLU(z)

∂h/∂z =

{
1 z ≥ 0

0 otherwise

∂L/∂H = ∂L/∂z × ∂z/∂H
∂L/∂bH = ∂L/∂z × ∂z/∂bH

z = xH + bH

∂z/∂H = x

∂z/∂bH = 1

We update H, a (50,000 x 1000) matrix with -∂L/∂H; The dimensions of ∂L/∂z are (d

x 1000), the dimensions of ∂z/∂H are (d x 50,000); thus we form ∂L/∂H = (∂z/∂H)T×∂L/∂z
d

.
Similarly we update bH , a (1 x 1000) vector with −∂L/∂bH ; we multiply ∂L/∂z by a 1000-
length ones vector which sums its values along the d axis, then divide by d.

6.1.2 Word embeddings

Previously we let x, with dimension |V |, represent a bag of words and be the input features.
This does not allow the relative positions of the words in the input to be specified. A more
common approach is to instead use a fixed sequence of some t (let’s say 20) words, and
represent each word in the vocabulary by an e-dimensional vector. This fits in nicely with
our set of equations. Let E be a |V |×e matrix (often called an embedding table). Informally,
we assign an index for each word in the vocabulary from 1 to |V |. Let the input be j1, j2, ...jt
where each ji is a one-hot vector, i.e. if ji represents ‘salamander’ and the index for that
word is 48, then ji = 0, . . . , 0, 1, 0, . . . , 0 consisting of 47 0s, a 1, and then 49,952 0s. Then we
redefine x as j1E; j2E; . . . ; jtE, a te-length vector. Backpropagation is extended to update
E as well3.

3There is generally no bias term for the word embeddings
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Chapter 7

Language Models: N-gram &
Feed-Forward

7.1 What they are and why they’re useful

A language model is, formally, a probabilistic formal language, i.e. an n-tuple that includes
a vocabulary Σ and contains mapping mechanism Σ∗ → R≥0. Furthermore, the sum of
all (infinite) x = x1, x2, . . . , xn ∈ Σ∗ should be 1. Practically speaking we usually want to
answer the question “What is the probability of the next word?”

We are formally seeking P (x1, x2, . . . , xn) so we can conveniently use the chain rule, insert
start and end tokens x0, xstop, and re-express as P (x1|x0)P (x2|x1, x0)

P (x3|x2, x1, x0) . . . P (xstop|xn, . . . , x0).
Why do we care? This can cover both syntax
P ( the cat slept peacefully ) > P ( slept the peacefully cat)
and semantics
P ( she studies morphosyntax ) > P ( she studies more faux syntax )
Furthermore the notion can be generalized beyond a single sentence and model a contin-

uous stream of language.
Language models help us to generate:

• translations

• spelling/grammar corrections

• summarizations

• text recognized from speech

Task Input Options Final (post-LM)
spelling no much effort no much effect not much effort
correction so much effort

no much effort
not much effort
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speech recognition she studies morphosyntax she studies morphosyntax
she studies more faux syntax
she’s studies morph or syntax

translation ella se va a casa she is going home she is going home
she is going house
she goes to home
to home she is going

These can also be used for prediction (type ‘Where can I’ into google, or start typing a
text message).

This application comes out of the generative models we looked at before. If we wanted
originally some P (Y |X) this is equivalent to P (X|Y )P (Y )/P (X) where P (X|Y ) can be
thought of as a ‘noisy channel’ corrupting unobserved Y into X. Then P (Y ) is the language
model the data creator used when generating Y before corrupting it into X, which is what
is seen. (P (X) isn’t needed; we see X, we don’t care about its likelihood). Y could be
anything; it could be a sentiment (but that’s not much of a language) or it could be a tag
sequence, or a language sequence. We’ll increasingly consider cases where it’s a natural
language sequence.

7.2 N-gram models

Just like we did for POS tags in the HMM, we can make an independence assumption, e.g.
that P (xi|xi−1, xi−2, xi−3, xi−4) = P (xi|xi−1, xi−2) (trigram model). And we can estimate
these conditional probabilities from data, just like before.

So if you want P (mast|before, the) we can use a corpus (say, Moby Dick) and unix tools
from before:

sed ’s/ /\n/g’ mobydick.txt | grep -v "^$" > md.words

paste md.words.txt <(tail -n+2 md.words.txt) <(tail -n+3 md.words.txt) \

| grep -ic "^before\tthe\t"

29

paste md.words.txt <(tail -n+2 md.words.txt) <(tail -n+3 md.words.txt) \

| grep -ic "^before\tthe\tmast"

4

So, 4/29 = 13.8% (at least in nautical novels).

7.2.1 N-gram as FSA

Just as we saw with POS tags, FSAs are suitable for representing n-gram language models; in
fact this was actually how they were represented (e.g. back in pre-neural speech recognition
days). Here is an example of a bigram FSA:
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START

the

dogs

ran

END

dogs:P (dogs|START)

the:P (the|START)

ran:P (ran|START)

the:P (the|dogs)

ran:P (ran|dogs)

dogs:P (dogs|dogs)

dogs:P (dogs|the)

ran:P (ran|the)

the:P (the|the)

dogs:P (dogs|ran)

the:P (the|ran)

ran:P (ran|ran)

ε : P (END|the)

ε : P (END|ran)

ε : P (END|dogs)

7.2.2 Using N-gram language models

Language models can be used for both evaluation and generation.
For evaluation, imagine we had the following snippet of text and wanted to know its

probability.

Call me Ishmael . Some years ago never mind how long precisely

A 3-gram language model would estimate this as P (Call|START,START)P (me|Call,
START)P (Ishmael|Call, me)P (.|me, Ishmael) . . . This could be used when comparing differ-
ent alternatives, as above.

For generation, we proceed as follows: Let’s say you’ve already started with Call. Then
from the set of P ( |Call, START), sample a word proportionally to the distribution. E.g. If
we have:

x P (x|call)
him .179
it .143
of .071
the .071
me .071
all .036
our .036
... ...
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you imagine a wheel where him takes up 17.9% of the wheel, it the next 14.3% and so on.
You spin the wheel and choose the word you land on. Let’s say you get it. Then you choose
from P ( |it, call) using a new table, and so on. Note that it’s generally not a good idea to
just take the most probable argument, nor is it a good idea to sample uniformly.

7.2.3 Problems with n-grams: sparsity, (Backoff and Smoothing)
and storage

N-gram language models are of great utility but they have some problems that need handling.
For one thing, they are quite sparse. 99.8% of the 5-grams in Moby Dick, for instance, occur
exactly once1.

What to do? One thing we can do is, as before, smooth. So if “go to sea as the” does
not occur in training (it doesn’t in Moby Dick) we can still add some small amount to each
vocabulary term so we don’t get zero probability for the whole sentence.

But what if “head to sea as a” does not occur because the context, “head to sea as ” does
not occur? Explicitly smoothing every possible 4-gram would explode the memory needed
to represent the language model. We instead (or really, additionally) condition on 3-gram
context and interpolate between the two models, i.e. λP (a|4−gram)+(1−λ)P (a|3−gram).
Even this can be represented as an FSA:

Note another problem with n-gram language models is their size. There is a parameter (a
probability) for every n-gram seen in training, plus for some n-grams not seen in training (due
to smoothing), plus all n− k grams for k = 1 to n− 1 (due to backoff). More training data
makes for better language models, but also for larger language models. Lossless (e.g. trie
storage) and lossy (e.g. Bloom filters – a hash function based approach that was sometimes
wrong but with low probability) compression techniques were all the rage until about 2011,
but we won’t discuss them here so we can instead move on to neural language models, which
made these approaches unnecessary.

1The three most frequent 5-grams, each occurring four times, are [in the middle of the], [go to sea as a],
and [’ Queequeg,’ said I, ’]
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7.3 Intrinsic evaluation: Perplexity

There’s no way to conceive of held-out ‘labeled’ data in language modeling. So how are we
to judge the quality of a language model? We hold out some portion of natural language and
after building the model ask it what it thinks of the held-out portion (i.e. how probabilistic
it is). Since the held-out portion is a sample of real language, the model should give it a
high probability. Naturally, we wouldn’t expect the probability to be 1, as if the model is
a true language model, it should distributed probability mass across all (generally infinite)
sentences of the language.

It won’t do, though, to have models report probabilities on one particular piece of text
(as there will be overfitting) nor can we compare across different pieces of text, as they
have different sizes. We instead want to report per-word behavior, since although we know
words don’t have equal ‘amounts’ of language (whatever that means) they come as close as
anything else.2 Rather than simply describe the probability per word we use an information-
theoretical approach. Consider cross-entropy, which is used to train logistic regression and
neural models (particularly ones with categorical output, which an LM is an instance of).
The cross entropy being calculated is:

H(p̃, q) = −
∑
x∈X

p̃(x) log q(x)

where x is a possible member of language X (i.e. a sentence), p̃ is the ‘true’ distribution
of language, and q is our model’s distribution of language. H, the cross-entropy, measures
the average number of bits (assuming a log base of 2) it takes to properly calculate the
memebrs of X using the suboptimal model q instead of p̃. Think of this as a ‘codebook’
with instructions on how to turn faulty distribution q into the true distribution; H is the
size of the entry of each item in the book. We don’t know the true distribution of p̃, but we
have a sample M of it, so we assume every x ∈M has probability 1, and everything else has
probability 0. So we can rewrite as:

H(p̃, q) = −
∑
x∈M

log q(x)

Furthermore, we generally predict language one word at a time and we want a metric for
the average ‘goodness’ of our model per word. So we re-cast M as a sequence of words
x1, x2, . . . , x|M | and write the average cross-entropy as:

Have(p̃, q) = − 1

|M |
∑
xi∈M

log q(xi|xi−1, . . . , x1)

Rather than report the average number of bits needed to represent the truth using q
instead of p̃ we instead cast this as the ‘degree of confusion.’ If 5 bits were needed, then a
codebook with words that represent up to 25 = 32 choices are needed, and so we are 32-way
‘confused’ or ‘perplexed’ when we use q. We thus calculate the per-word perplexity as

2Have(p̃,q)

2There is work that measures per-character or even per-byte perplexity but it is less common.
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However, this assumes cross-entropy was calculated with a base 2 log, and in general that’s
not what we do; we prefer to use a base of e. So perplexity is in fact usually calculated in
terms of ‘nats’, i.e .

exp(Have(p̃, q))

A really bad language model that predicts each word in V uniformly would get perplexity
of |V |. A really good one would have perplexity of 1.

Despite using per-word averages it is usually a good idea to compare across common
benchmarks. The 1m-word Penn treebank with a vocabulary limited to 10,000 types gets
141 ppl using a good 5-gram model, and under 60 using neural models (see below/next). On
a larger wikipedia-based 1b-word corpus, state of the art as of 2016 is around 25.

7.4 Feed-forward language models

TG previously introduced feed forward language models for classification. How can we use
these for language modeling? Further, why might these be useful for language modeling?

First the how. Although this can be multi-layered, let’s use a simple one-layer architec-
ture, assume a context of four words, and a non-linear function for the hidden layer called
g. We assume the dimension of a word representation (aka the ‘embedding’) is 50 and the
dimension of the hidden representation is 100. We also assume a vocabulary of 20,000 words.
When calculating the hidden and output vectors (but not the embedding) we will assume
a bias term. We thus have the following weight (i.e. parameter) matrices, which are listed
along with their dimensions:

• Embedding table E : (20,000 x 50)

• Hidden weights H : (200 x 100)

• Hidden bias bH : (1 x 100)

• Output weights O : (100 x 20,000)

• Output bias bO : (1 x 20,000)

E is indexed by the vocabulary. We want to get the probability of the example above,
in a 5-gram model. So that is P (Call|START,START,START,START)
P (me|Call,START,START,START)P (Ishmael|me,Call,START,START), etc. For the first
term, P (Call|START,START,START,START), assume we have some row in E for START.
Concatenate four copies of that row; we’ll call that x. Then multiply and apply nonlin-
ear function g: g(xH + bH) = h; a 100-dimensional vector representing the context. We
want to determine the probability of Call given this context. hO + bO yields `, a 20,000-
dimensional vector with one value for each word in the vocabulary, including Call. But
these are not probabilities3. We use the softmax operator to set oi = exp(`i)∑

i′ exp(`i′ )
for each

position i in `. Then if we assume position k in o (and `) corresponds to the word Call,
we simply retrieve that value to get P (Call|START,START,START,START). We next get

3we call ` logits
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P (me|Call,START,START,START) by doing the same thing, but starting off with the kth
row of E concatenated with three copies of the row for START, and at the end choose the
item corresponding to the index for me.

What is the advantage to using this approach instead of the non-neural n-gram approach
(apart from the empirical superior performance)?

Smoothing/Interpolation: Notice that for any 4-gram over the vocabulary space we
can get the probability of each word (also over the entire vocabulary space. There is no
explicit backoff or smoothing here.

Storage: Let’s compare the sizes of the feedforward and non-feedforward models. First
sum up the feedforward:

• E: 1,000,000

• H + bH : 20,100

• O + bO: 2,020,000

• Total: 3,040,000

Notice that this is not dependent on how much training data we use. It is dependent
on some modeling decisions, like embedding and hidden size, number of layers, etc. Most
of all it’s dependent on vocabulary. Contrast this with the number of parameters used for
a 5-gram model. This is highly dependent on corpus size. Below we show the parameter
size if the model is trained on moby dick and tom sawyer and compare this to training on
the treebank portion of the wall street journal. Note that both are considered fairly small
corpora for language modeling. I also added stats for gigaword, a much larger corpus.

n-gram moby dick + tom sawyer wsj treebank gigaword
(tokens) 181,017 1,107,391 4.2b
5 180,612 1,074,244 558m
4 178,904 1,037,648 447m
3 167,372 906,848 246m
2 113,439 530,884 60m
1 27,279 85,967 1m
total 667,606 3,635,591 1.3B

The feedforward model, meanwhile, remains a constant size.

7.4.1 Why should this work?

To some degree this is a bit of a mystery on a deep level. But there is some good intuition
for why this might work. There are multiple angles to address this question; here’s one:

A word embedding can be thought of as features specific to that word type. Rather than
treat each of 20k words as 20k independent items, we characterize them as having certain
properties. We could do this by hand (e.g. ‘French origin’, ‘animate’, ‘plural’) but rely on
training for these features to be implicitly defined. By representing a 20,000-dimensional
object in 50-space, some properties shared among disparate objects have to be identified,
otherwise learning won’t happen.
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Similarly, the hidden representation is a 100-dimensional representation that generalizes a
four-gram – there are 20, 0004 possible such objects. This is formed by considering multiple
embedding features together simultaneously. If we added more hidden layers this would
consider multiples of multiples of features simultaneously.

7.4.2 How are these parameters set?

With backpropagation over a training corpus, as TG showed. Let’s go over this in a little
more detail, especially because of the relevance to HW2. We’ll build a computation graph
and discuss how to calculate the gradient updates at each position, how to deal with batches
of training, etc.

A training instance consists of 4-gram context and the next word. Note that we have
declared our vocabulary to be 20,000 words; even for Treebank-wsj that is too small a
vocabulary to cover all types seen.4 Vocabulary is the biggest factor in network size, so
computational power generally limits it; if we assume 20k is the cap here, we will have to
replace some selection of word types (typically some 1-count types).5

The loss is typically the cross-entropy, −
∑

i∈V p̃(wi|c) log oi for context (i.e. 4-gram) c,
where i is an index to a word in vocabulary V (which is represented as wi; p̃(wi|c) means the
‘true’ probability of word wi in this context, and oi, as previously mentioned, is the model’s
probability of the training example.

7.4.3 Getting the gradients right

As we noted before:

z = xH + bH

h = g(z)

` = hO + bO

o = softmax(`)

L = − log(ok)

where L is the loss; note that the variable on the right is ok, the probability of word wk,
which is the ‘true’ word for this context. Having calculated the loss, we update each set of
parameters (H, bH , O, bO) with respect to the opposite of the gradient of L, i.e:

H ← H − λ∂L/∂H
bH ← bH − λ∂L/∂bH
O ← O − λ∂L/∂O
bO ← bO − λ∂L/∂bO

4English dictionaries have about 170k entries; this doesn’t cover all inflections but gives you an idea of
how many words might be ‘enough.’

5Later on we’ll consider using word pieces which directly addresses this vocabulary problem.
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where λ is a learning rate. Now how are these partials determined? We start at the loss
equation itself and use simple calculus:

L = − log(ok)

∂L/∂ok = −1/ok

Now consider the definition of ok itself; we can use the chain rule and the local derivative
of ok with respect to `, though softmax is a slightly tricky function to take a derivative of:

∂L/∂` = ∂L/∂ok × ∂ok/∂`

ok =
exp(`k)∑
i exp(`i)

To calculate ∂ok/∂` we will make use of the derivative rule for quotients:

(
f(x)

g(x)
)′ =

g(x)f(x)′ − f(x)g(x)′

g(x)2

It is helpful to consider the application of this rule to ∂ok/∂` in two cases: when i = k
and when i 6= k.

[∂ok/∂`]i 6=k =

∑
i′ exp(`i′)× 0− exp(`k) exp(`i)

(
∑

i′ exp(`i′))2

= − exp(`k)∑
i′ exp(`i′)

exp(`i)∑
i′ exp(`i′)

= −okoi

[∂ok/∂`]k =

∑
i exp(`i) exp(`k)− exp(`k)

2

(
∑

i′ exp(`i′))2

=
exp(`k)∑
i′ exp(`i′)

∑
i exp(`i)− exp(`k)∑

i′ exp(`i′)

= ok(1− ok)
Now we can multiply ∂L/∂ok (−1/ok) with ∂ok/∂` to get ∂L/∂`:

∂L/∂` =

{
ok − 1 i = k

oi otherwise
(7.1)

We next continue on down to find the gradient of L with respect to O and bO, which are
actual parameters we want to learn. We use the definition of ` in terms of these variables
and what we have previously learned:

∂L/∂O = ∂L/∂`× ∂`/∂O
∂L/∂bO = ∂L/∂`× ∂`/∂bO

` = hO + bO

∂`/∂O = h

∂`/∂bO = 1
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We can simply multiply ∂L/∂`, which is the complicated value in Figure 7.1, by either
h or (the vector) 1, as noted above. Here it’s worth noting that we want to get the shapes
of our gradient matrices right and that we want to deal with batches of training samples
properly.

Imagine that we are updating parameters after seeing one training instance. Then, ∂L/∂`
is a (1 x 20,000) vector. h is a (1 x 100) vector, and we want to update O, which is a (100
x 20,000) matrix. Thus we take hT × ∂L/∂` to get the right shape. However note that in
general we do not update after a single training instance; rather there may be some d items
in the minibatch. So in fact ∂L/∂` is a (d x 20,000) matrix and h is a (d x 100) matrix.
hT × ∂L/∂` still yields a (100 x 20,000) matrix but it is actually the sum of d individual loss
calculations. The point of batch updating is to take a per-item average. Thus the proper

update for O is to subtract (the learning rate times) hT×∂L/∂`
d

. Similarly, to update bO, it
is important to actually multiply ∂L/∂` by a 20,000-length ones vector, which amounts to
summing each dimension of ∂L/∂` along the batch axis, then divide by d.

If you’ve gotten this far, the rest should be straight-forward. We will need ∂L/∂h, which
is of course ∂L/∂`×∂`/∂h; the former term is in Equation 7.1 and is (d x 20,000), the latter
is simply O, which is (100 x 20,000). We calculate as ∂L/∂`× OT to get a (d x 100) result
for ∂L/∂h.

We can now move on to the hidden layer; let’s assume g is ReLu.

∂L/∂z = ∂L/∂h× ∂h/∂z
h = ReLU(z)

∂h/∂z =

{
1 z ≥ 0

0 otherwise

∂L/∂H = ∂L/∂z × ∂z/∂H
∂L/∂bH = ∂L/∂z × ∂z/∂bH

z = xH + bH

∂z/∂H = x

∂z/∂bH = 1

We update H, a (200 x 100) matrix with -∂L/∂H; The dimensions of ∂L/∂z are (d x 100),

the dimensions of ∂z/∂H are (d x 200); thus we form ∂L/∂H = (∂z/∂H)T×∂L/∂z
d

. Similarly
we update bH , a (1 x 100) vector with −∂L/∂bH ; we multiply ∂L/∂z by a 100-length ones
vector which sums its values along the d axis, then divide by d.

We didn’t go back all the way to E but we could have; ∂L/∂E = ∂L/∂xtimes∂x∂E. To
get ∂x∂E note that x is formed by concatenating four rows of E; let the selector of those
rows be (d x 20,000) one-hot (per row) matrix Φ. So consider this four separate instances
of x = ΦE. Take the (d x 200) matrix ∂L/∂x and slice it into columns 0-49, 51-99, 100-149,
150-199. Then use each (d x 50) matrix with ∂x∂E = Φ; the net result is that the selected
rows are updated by the corresponding slice of ∂L/∂x.
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Chapter 8

Language Models Continued: RNNs

8.1 Limitations of Feed-Forward Networks

Feed-forward language models solve a lot of the problems with (non-neural) n-gram models.
Specifically they

• generalize, handling the sparsity problem much better than n-gram models, with much
lower perplexity on unseen n-grams.

• are efficient, requiring constant memory and do not blow up with the amount of training
data (and hence noverl n-grams) seen.

• allow for larger n; beyond 5-grams, non-neural models were never that helpful. We
used 12-gram feed forward models effectively.

There are some limitations, however. Some are newly introduced, while some are persis-
tent and may now be addressed.

• Although the size of feed-forward is fixed, it is highly dependent on vocabulary size (this
also determines computation time). This limits the vocabulary rather significantly.
There have been methods to overcome this, either partially or totally, some of which
we will talk about (subword models) and some of which we won’t (noise-contrastive
estimation, hierarchical softmax).

• Compared to non-neural models, neural models take a rather long time to train, since
parameter estimation using maximum likelihood and smoothing requires only one pass
through the data, (with very simple calculations). The use of GPUs helps this some-
what but it remains an ongoing concern we won’t directly discuss.

• Correctly modeling language can require very long context. E.g. My mother, who

once caught a balance beam in her eye, but is actually nicer than you might

expect, lived with three bermuda sharks and (like/likes) ice cream.. We
are fundamentally limited by whatever n we select. We will directly address this now.
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8.2 Recurrent Neural Networks (RNNs)

In some respects, RNNs are very similar to feed-forward networks. A word representation
feeds into one or more hidden layers, fully connected and with a nonlinear function, and
ultimately the hidden representation is used to predict the probability of the next word.
Gradient descent along the cross-entropy loss via backpropagation is used to update param-
eters.

The key difference is in the structure of the parameters, specifically in the construction
of the hidden vector, h. Here is the way h is constructed in feed-forward, as a 4-gram model
with an embedding dimension of 3 and a hidden dimension of 6:

By comparison here is the construction of a hidden unit h1 for an RNN:

Notice that the input to the RNN is a hidden vector and a word embedding. The output
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is another hidden vector.1 However, this only captures the hidden representation for one
word. If we want to capture the sequence w1, w2, w3 we simply re-do the calculation, using
the last calculated h. Note that at each step we use the same H and bH and these are not
shown in the diagram below for space reasons.

h1,2,3 is a representation of w1, w2, w3 the same as the h in the feed-forward example.
Just as in the feed-forward case, we can get a logit layer from h1,2,3 (which we will now call
simply h3) and then with softmax get probabilities over the next word. But of course we can
continue adding words and getting new hidden vectors that capture more and more context.

The hidden vectors can be viewed as (and I often describe them as) states in the sense of
a finite-state automaton. Each position in hidden space is a state, from which an arc labeled
with each word in the vocabulary leads to another state. Different from an FSA, however,
is that an RNN is an infinite-state automaton (at least to the level of representability in
hardware).

Note that H can be divided into the piece that applies to the hidden state input and
the piece that applies to the lexical input; the pieces are frequently written as Hih and
Hhh to distinguish between the weights relevant to the context (hidden-to-hidden) and those
relevant to the words (input-to-hidden):

1There’s no special requirement about the size of the hidden or embedding vectors; I just made them
look very similar to illustrate how similar the computation is.
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Recall that feed-forward parameters were dependent on the amount of context that was
used; for each additional word of context there were V xhidden more parameters; as V can
be large this is quite substantial.

As with feed-forward networks, RNNs can be stacked ; this is where the ‘deep’ in deep
learning comes from. The hidden unit at a layer becomes the ‘input’ to the next layer.
Typically, the last layer is then converted (via output weights) to logits to predict the next
word in the sequence. Typically, each layer has a separate learned h0, H, and bH , which are
learned, as is the output weight matrix O and bias bO. So if the non-linear function is σ, the
embedding of word wj is xj, the hidden weights at layer i are Hi, bH,i and the initial hidden
state h0,i, the logits for predicting w2 would be calculated as σ([σ([x1;h0,1]H1+bH,1);h0,2]H2+
bH,2)O + bO.
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8.2.1 Training

The structure of the training for RNN LMs is quite simple; you constantly evaluate the
prediction of the next word given the last context. In theory this is done over the entire
corpus, but in practice this can be very slow, since gradients are calculated with respect to
each step in the context, so context is limited to the sentence. Standard cross-entropy loss
is generally used.
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8.3 Unreasonable effectiveness of

it turns out RNNs are pretty powerful generation models; this was not always true of the
strictly n-gram models. Andrej Karpathy, in a blog post titled ‘The Unreasonable Effective-
ness of RNNs’ built an RNN that operated one character at a time and trained it on various
kinds of text, then generated samples from the trained models and got surprisingly good
outputs.

8.3.1 Shakespeare

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be

attain’d into being never fed, And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should

be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord: They would be ruled after this chamber, and my fair nues begun out

of the fact, to be conveyed, Whose noble souls I’ll have the heart of the wars.

Clown: Come, sir, I will make did behold your worship.

VIOLA: I’ll drink it.

8.3.2 Wikipedia

== ’’Declaration of Protectance from Iceland’’ ==

In the late 1970s, [[Deep Seols]] and the Australian Federal Navy in order to

establish a police duty of a several federal government of the world.

Since 2004 the state regarded as a [[Suffolk Act 1994]], but the [[Army

personality|Armed Forces]] appeared in Paris, despots with Nelson concentrated

on) was inaugurated as his father. Heraldry put an attempt to get influent

territory register. Hayling among their lost operations, a population of

Deliberate countries arrived and Harry Elser, established [[The West Virasian

Socialist Wars]] for 16 year and modern democratic 30 [[Justice|booms]]

elections to the CDC.
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8.3.3 LATEX(some compile bugs had to be fixed)

8.4 Other Uses

• Tagging (POS, NE); generate a label at every word

• Sentence classification: e.g. sentiment. Take some hidden state as the ’sentence’ state
– could be the last, could be an average, then predict class label.

• As a sentence representation in something more complicated (e.g. question answering)

• Generation given context (e.g. speech recognition, machine translation)

In many of the whole-sentence variants above a bidirectional RNN is used; I’ll give a
quick sketch but we’ll see this more in MT and IE lectures.

8.5 Variants

As we have seen, RNNs can in theory represent infinite context. In practice it is hard to
do this due to some practical considerations. Calculating gradient through time requires
repeated multiplications of the hidden weight matrix. It turns out that if the largest eigen-
value of H < 1 then the gradient will shrink exponentially (vanish), which means after not
many words of context you won’t see any effect. Also, if the largest eigenvalue of H > 1
then the gradient will grow exponentially (explode) which can cause updates to be too large
or even NaN.

Exploding gradients can be clipped: define a maximum gradient amount (i think ‘5’ is
often used) and if the L2 norm exceeds that amount, divide the gradients by max/||g||. For
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vanishing gradients scaling can be used, but another solution was found: a more complicated
RNN that has a memory element and a means of learning how much memory to keep from
step to step.

8.5.1 Long Short-Term Memory (LSTM)

The key to LSTM is as follows:

• The ‘pre-cell’ is a standard nonlinear calculation (typically tanh or Relu).

• Input, forget, and output ‘gates’ are vectors of values from 0 to 1 (typically sigmoid)

• The cell is formed by gating how much should be input from the pre-cell and how much
should be forgotten from the last cell (then adding these).

• The hidden state is formed by tanh-ing the cell and then using the output gate to
determine how much gets through.

The equation slide from Abi See (stanford class) and figure from Chris Olah (also used
by Abi See) help me understand.
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8.5.2 Gated Recurrent Units

Very similar idea to LSTMs; proposed by Cho et al. in 2014. Simnpler than LSTM but
same idea:

• No cell state. Two gates; update and reset.

• pre-hidden state calculated like a classic hidden state but hadamard of reset with the
previous hidden state (like a forget gate)

• final hidden state interpolates between last hidden and current pre-hidden using update
and 1-update (which thus functions like an input and output/forget

Again, the slides:
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There are other variants but LSTM and GRU are the most widely used RNNs. It’s
unclear which is better; I have mostly used LSTMs but only out of hOther ways to prevent
forgetting the past are the use of attention and residual connections, which are both ways
of ‘skipping’ the chain of words in one way or another. As we will see, since 2017 (things
move fast) Transformer networks have gone a long way to replacing RNNs but use a lot of
the techniques that RNNs incorporated to solve these problems.

8.6 LM Summary

• Language Models: predict the next word given previous context.

• statistical n-grams: simple to build, can be tricky to smooth, used for many years

• feed-forward n-grams: avoid sparsity and are more space efficient but longer to train,
vocabulary limited, size grows with context

• RNN: infinite context possible. Training takes longer, raises questions of vanishing/-
exploding gradients. More complicated models (LSTM, GRU) can help with this.
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Chapter 9

Machine Translation
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Chapter 10

Transformers

In 2017 some researchers at Google considered whether the recurrent part of RNNs/LSTMs
was really that important at all in neural MT. In the paper ‘Attention is all you need’, they
decribed their model, Transformer [30], which outperformed the state of the art at the time
at a variety of data points and at lower cost to train.

Within a year or so Transformer models took over most of NLP as they were shown to
be useful as language models and as feature sets for classification and structured prediction
models. As I write this it’s unclear if yet another model will prove even more compelling
but these models seem quite good for now. All the images in these notes come from others’
papers, lectures, blog posts, etc. Apart from the original transfromer paper I recommend
the illustrated transformer 1 or the annotated transformer2.

10.1 Base Model

We’re going to cover the details in Transformer in various order, sort of from the outside
in. To begin with, the overall shape is stacks of representations, conventionally of size 6,
with one representation stack per word in the input and in the output. To begin with let’s
imagine each block is just a feed-forward network. Each word is embedded, then at each
stage, it’s passed through nonlinear transformation via ReLU. In fact there are two linear
transformations and one ReLU at each level. So if x is the embedding (or input from last
layer), the output is max(0, xW1 + b1)W2 + b2).3

1http://jalammar.github.io/illustrated-transformer/
2https://nlp.seas.harvard.edu/2018/04/03/attention.html
3W1 is (512× 2048) and W2 is (2048× 512).
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And as you might imagine, attention is heavily involved. There are multiple kinds of
attention but to begin with let’s consider the ‘normal’ attention we’ve already discussed, i.e.
from source to target words (from Illustrated transformer):

Notice that this attention is performed at every layer of the decoder.

10.1.1 Key, Query, Value Attention

Here’s how we did attention before (fig from abi see):
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let h1, . . . , hN be hidden states of the encoder and st be the hidden state of the de-
coder. Then score vector e(t) = [sTt h1, s

T
t h2, . . . , s

T
t hN ]. Then distribution veector α(t) =

softmax(e(t)). Then make a linear combination of h; at =
∑N

i=1 α
(t)
i hi. That is then concate-

nated to st and used to predict.
Transformer does it a bit differently. Instead of directly taking a dot product of st

and each hi, each of these is transformed linearly; st by a “query” matrix Q and hi by a
“key” matrix K. Then stQ(hiK)T is the score; this is done for every hi and turned into a
distribution αt by softmax.4

Now, instead of using αt to linearly combine each hi, the hi are transformed again by a
“value” matrix V . These are then linearly combined. That is then fed to the feed-forward
unit. Attention, followed by feed forward, is one layer, and there are six.

10.1.2 self-attention

Why should attention be limited to target words looking at related source words? For ht
we can calculate α

(t)

self
= htQ(hiK)T on the source side. On the target side we can almost

do the same thing; we calculate stQ(siK)T but only for i < t; otherwise we’d be training
on the future, which is not helpful at inference time!. In practice a mask is used to prevent
‘peeking’ on the decoder during training.

I think the figure below by Alireza zareian nicely expresses the calculateion for self-
attention:

4Not quite. Actually it’s stQ(hiK)T√
|K|

, i.e. divide by the dimension of K. This keeps gradients from getting

too small, per notes in the paper.
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So each layer constitutes a number of sublayers. Jay Alammar of Illustrated Transformer
has a nice figure:

10.1.3 multi-head

Self attention can be viewed as a generalization of convolving kernels used in convolutional
neural networks (CNNs). CNN filters, however, have dimension tied to the relative offset
of adjacent inputs (words, pixels, hidden units) while the same Q, K, and V are applied to
each input on a layer (different set for source, self-encoder, and self-decoder). Also, CNN
filters do fixed combination, not a distributional interpolation. But the information sharing
paradigm is very similar.

What are we actually doing when we do self-attention? In source-attention the semantics
seemed clear; we’re looking at corresponding words to be translated. But in self attention
that’s not the case. We are probably combining some semantic and syntactic coordination.

But there are different aspects of information we might want to attend. It seems odd to
distill them down into a single (Q, K, V) triple. And since we noticed the similarity to CNNs
we can use a technique used in CNNs: multiple filters! Indeed, we actually do attention in
one place many5 times with a different learned (Q, K, V) set for each time; each attention
that is learned is called a ‘head’. Rather than use e.g. max-pooling or mean-pooling as is
often done in CNN, Transformer instead does a linear projection of the heads (Alammar):

Here is attention all together (Alammar):

5eight
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10.1.4 Residual Connections and Layer Norm

In the story we’ve told so far, data enters a layer, is combined with information from all the
other words in the sentence (so far, for decoder) with self attention, if the decoder, is then
combined with all the words in the source, then is projected through a feed-forward layer.
So if we call the input to a layer x and the self-attention, source-attention, and feed-forward
sublayers functions self , source, and ff , the output on the encoder is ff(self(x)) and on
the decoder is ff(source(self(x))). This seems like a good opportunity for the information
at that position to get lost; self-attention could decide not to attend to the self! A well-
known technique called residual connections is used; in each case we simply add the input
back again after each sublayer. This is only done per-sublayer.

We introduce some sub-results: on the encoder we calculate x′ = self(x) + x. Then
the output is ff(x′) + x′. Similarly on the decoder we calculate x′ as before, then x′′ =
source(x′) + x′ and the output is ff(x′′) + x′′.

OK but we don’t actually even use the original x or the other intermediates without
modification either! Instead we use a technique called ‘layer norm’ [2] which essentially
modifies each item by subtracting the mean and divides by the standard deviation over the
vector.6 So in fact x′ = self(norm(x))+x, and for the decoder, x′′ = source(norm(x′))+x′;
For the encoder, the output is ff(norm(x′))+x′, and for the decoder it is ff(norm(x′′))+x′′.
This is not well-described in the original paper but is what has been uncovered (by TG and
others). We now know almost everything in this handy diagram from the original paper:

6it’s a little more complicated than that but this is already rather in the weeds.
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10.1.5 Positional Embeddings

We haven’t put any explicit notion of the ordering of the words in yet. So a specific sinusoidal
function is added element-wise to each embedding. Specifically, for the nth word (0-based),
in the even positions 2i of the embedding, for 1 to 512, sin( n

100002i/1024
) is added and in the

odd positions 2i + 1, cos( n
100002i/1024

) is added. The paper says that the position embedding
for any j + k can be represented as a linear function of the position embedding for j, so the
other elements in the Transformer can take advantage of this, if they need to, and then there
is theoretically no limit to the number of tokens that can be read. However in practice there
are other ways to do this, and having an upper bound on length is not that big a deal. Here
is what the position embedding look like:
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10.1.6 Shared embeddings and BPE

One last part of the model: the word embeddings! Or should I say, the word piece embed-
dings. Before I explain that, notice there are three places where something like embeddings
are used:

1. Source words are converted into embeddings

2. Target words are converted into embeddings

3. the matrix that makes logits looks an awful lot like an embedding (one dense vector
for each vocabulary item).

This is three very large tables that all have the same dimension (though one is transpose);
would be nice to have just one table. So we can do that – simply use the same parameters
for all three cases. Now, you might think this is silly; the source and target vocabulary are
quite different from each other! And that can be true, though in practice there is quite a bit
of meaningful overlap, e.g. names, numbers, times.

Plus, if we break up the words we might have even more overlap! If both languages
are in latin characters, we can just use characters instead of words and then there will be
lots of overlap! But in Transformer instead, something in-between characters and words is
used: byte-pair encodings (BPE): [28]. This is a kind of unsupervised word segmentation
algorithm that works as follows:

def bpe ( merges , vocab ) :
for i in range ( merges ) :

# count a l l ad jacen t by tes , e . g .
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# ” four ” = ” f o u r ” = ” f /o , o/u , u/ r ”
# m u l t i p l y by count o f word in corpus
p a i r s = g e t s t a t s ( vocab )

# f i n d the most f r e q u e n t p a i r . l e t ’ s say i t ’ s ”o/u”
best = argmax ( p a i r s )
# now c o n s i d e r ”ou” to be merged . So next time
# ” four ” = ” f ou r ” and i n s t e a d you count ” f /ou , ou/ r ”
vocab = merge Vocab ( vocab , bes t )

return vocab

You run it as long as you want. Instead of merges you can consider the size of the
vocabulary you want. For latin languages the minimum is around 60 (e.g. most of ASCII)
but this means the vocabulary blow up of before is no longer relevant. Furthermore, you can
now more easily understand why it’s useful to combine the embedding tables.

What about different character sets? Well, most people don’t seem to worry about that
because of hegemony. But we (at ISI) do; we have romanization tools that convert all
langauge data into a common space (latin letters...still pretty hegemonic).

10.1.7 Model optimization tips

• Batches had 25k tokens (in practice similar length sentences are grouped together for
maximum parallelism with minimal lost work).

• Adam optimizer (SGD with fancy learning rate) plus a fancy learning rate on top of
that

• Dropout! Everywhere in the model, with probability 0.1, treat a parameter as if it was
0. don’t contribute to the loss, don’t update on backprop.
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Chapter 11

Pre-Trained LMs

11.1 ELMo

In 2016, despite the rise of NMT and biLSTM-CRF, the predominant use of ‘neural networks’
in NLP was to insert type-based word embeddings like GLoVE or GenSim (implementation
of Word2Vec) into existing models. ELMo [22] (Embeddings from Language Models) from
AI2 came out in 2018 and introduced what it pitched as better embeddings. It showed
across-the-board improvement on a number of diverse NLP tasks and was, not surprisingly,
the best paper at NAACL, given that everyone knew about it by the time the conference
came around (it was first posted in October 2017). The claim was that this is a set of
contextualized word embeddings. That is, instead of having one representation for bank, the
word has a different representation depending on the context (i.e. sentence) it appears in.

How is this done? Well, first a contextual model of text is needed. That’s easy, we’ve
already seen several. This predates (sort of) Transformer, so ELMo used the predominant
method at the time, bidirectional LSTMs.

LSTMs are trained on plain text for the language modeling task, i.e. predict the next
word (for the forward LSTM) or the previous word (for the backward LSTM). Here’s an
illustration from The Illustrated BERT: 1

1http://jalammar.github.io/illustrated-bert/
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This is trained on the Billion Word Benchmark [6] which is 1B English words from WMT
2011. That probably took a while but AI2 did it so you don’t have to!2

Now an embedding of a word in its context is obtained by running the context (i.e. the
sentence) through the trained bi-LSTM and reading off the hidden state in both directions.
Or, as it turns out, you can take some linear interpolation of hidden states at each layer;
specifically how to linearly interpolate can be chosen by fine tuning interpolation parameters.
However the core embeddings aren’t fine tuned; they’re just produced and used.

What was really cool about ELMo is you could use these embeddings in place of em-
beddings in your previously built models for various tasks and you pretty much got a gain.
The most impressive results presented with the ELMo paperwere across-the board lifts in
the GLUE [31] tests by taking SOTA models and substituting in ELMo embeddings:

Here’s a bar graph (sam bowman slides)

2Note: how are the words initially embedded? The paper is pretty murky about this! Best I can figure
they are read in as a character CNN (but I won’t get into the details about this; somewhat also murky
details are in [12] – this is what happens when you don’t use peer review!!
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I should probably mention what these tasks are:

• SQuAD: question answering, extractive. Find the span.

• SNLI: natural language inference, aka ‘entailment’: given a pair of sentences (A, B),
does B entail A, contradict A, or is it neutral to A? If A=‘Three men are stand-
ing in a field’ and B=‘People are standing’, B entails A. If B=‘People are sleeping’,
contradiction. If B=‘The field is covered in snow’, neutral. Classify correctly.

• SRL: determine the semantic roles of text spans as they relate to verbs (e.g in ‘Mary
sold the book to John’, Mary=agent, John=recipient, sold=predicate). Classification.

• Coref: Determine which mentions are of the same entity

• NER: find the spans and label with entity type

• Sentiment: classify sentence sentiment in a 5-way label

11.2 OpenAI GPT

Not to be out done, in June 2018, OpenAI improved upon ELMo in a paper that IMO didn’t
get too much attention [24], maybe because it wasn’t even put on ArXiv AFAICT, let alone
submitted for publication. It had the following differences from ELMo:

• Transformer architecture instead of biLSTM. Along with that, using BPE.

• Designed directly for task prediction, with no other architecture, and carried with it a
notion of fine-tuning ; a task (e.g. multiple choice question answering) is turned into
input sequences (e.g. question, separator token, answer choice). The topmost hidden
unit after reading the last word is connected to a feed-forward classifier. Cross entropy
on the classifier back-propagated.

• Trained on different data (Books corpus = 800M words)

GPT is essentially a Transformer decoder without source attention to an encoder. In other
words, it uses masked self-attention that only looks to its left. If it didn’t, the topology of
Transformer means it could ’cheat’:
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Here’s an illustration of how task prediction works. You structure your input data as a
series of sentences and then put a feed forward/linear layer on the end to map to classification.

I didn’t actually hear GPT until reading the BERT paper...maybe BERT had better
marketing.

11.3 BERT (images from Jacob Devlin slides)

ELMo had a few months of glory (and everyone(?) ignored GPT) until October 2018 when
Google struck back with BERT (Bidirectional Encoder Representations from Transformer)
[8], clearly riffing on the muppet theme.3 Like GPT, BERT used Transformer and subwords
(though it used google’s slightly different WordPiece [32]). BERT also used the fine tuning
paradigm. But there were more important differences:

• New objectives: Bidirectional prediction using word masking and next sentence pre-
diction

• More structured two-sentence representation, class token for predictions included dur-
ing training (first word of every input is the otherwise unused [CLS]).

3Yes, there were more muppet themed papers: GROVER (Generating aRticles by Only Viewing mEtadata
Records.) [33], ERNIE (Enhanced language RepresentatioN with Informative Entities) [36] (I think there
were two ERNIEs actually). There was something branded ‘big bird’ but it wasn’t part of the paper name.
The trend seems to have eased, thankfully.
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• Pretraining+Fine Tuning recipe

• Trained on a lot more data (Wikipedia = 2.5B words + Books corpus = 800M words)

• There’s a large version of BERT with tons of parameters: for L=layers, H=hidden
units, A=attention heads, BERT-BASE = (L=12, H=768, A=12, Total Parame-
ters=110M) = same size as GPT; BERT-LARGE = (L=24, H=1024, A=16, Total
Parameters=340M)

In ablation studies, the BERT authors claim the key is in the pretraining tasks: GPT
and ELMo just pretrained on the language model objective (predict next word).

To pretrain, BERT masks out 15% of the words from its training data and then tries to
predict them (15 seemed to be the magic number):

BERT also structures its input in the following way:

An encoding value is learned (same value on each position) for ‘sentence 1’ vs ‘sentence
2’ and added to each embedding. This is how data is then set up (see above). The [CLS]
token is used instead of the last word token used in GPT.

Two pretraining losses are calculated. For each MASK token, the top level hidden unit
corresponding to each MASK predicts a word from the vocabulary (well, loss for probability
of the correct word is calculated). Only sometimes (10%) a random word is used instead
of [MASK] and sometimes (10%) the right word is used, but the 15% of words we need to
predict in this pretraining are specified in the training corpus. Note that now self-attention
can span the entire sentence.

Additionally, a next sentence prediction task is used: Either sentence 2 is the next
sentence or it isn’t, and this is learned by feeding the top hidden unit for [CLS] into a
binary classifier.

Apart from pre-training, BERT uses per-task fine-tuning. Here’s a diagram from the
BERT paper comparing the two:
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Fine tuning is the same idea as before, though BERT can be used both in classification
and tagging paradigms (so could the other models, presumably). Here are the setups (from
BERT paper):

Here’s an overview comparing the topologies of ELMo, GPT, and BERT (from BERT
paper):
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Results were significant:

The tasks:

• MNLI: like NLI but done over many genres, supposed to be less biased (we’ll get into
that)

• QQP: Quora question pairs: given two questions, are they asking the same thing?

• QNLI: SQUAD converted into a binary NLI task (does this sentence answer the ques-
tion?)

• SST-2: Binary sentiment analysis

• CoLA: Given an english sentence, is it ‘acceptable’ to native ears (‘Bill’s book has a
red cover.’) or not (‘The Bill’s book has a red cover.’)

• STS-B: Sentence pairs annotated with score from 1 to 5 on semantic similarity

• MRPC: Are two sentences semantically equivalent?
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• RTE: Like MNLI but much less training data

An additional GLUE task, WNLI, is the Winograd challenge (Resolve ‘it’ in ‘The trophy
didn’t fit in the suitcase because it was too big/small.’) At BERT publication no model,
including BERT, outperformed majority baseline (65.1). (This has since changed.)

A quick followup from Facebook, RoBERTa (Robustly Optimized BERT pretraining
Approach) [18]:

• Even more data. Everything in BERT (Book Corpus and Wikipedia = 16GB uncom-
pressed) plus Common Crawl news (76 GB after filtering) plus web text data linked to
from reddit with 3+ upvotes (38 GB) plus a subset of common crawl filtered to look
like winograd stories (31 GB).

• Unlike BERT, masking was done multiple times on sentences.

• Next Sentence Prediction as described in the BERT paper (but possibly not in the
implementation) seems to hurt, so it was removed. Just masking is used. (So what
happens to the CLS token training? Presumably only fine-tuning is used to make it
meaningful but this is somewhat unclear to me.)

• Using the same training settings as BERT, and the same data, RoBERTa was better.
When adding more data and training even longer it was even better.

There have since been many more:

• DistilBERT [27]: Almost as good as BERT but a lot faster and smaller

• AlBERT [15]: A Lite BERT. same idea.

• BART [17] BERT but a sequence-to-sequence model, useful for generation and classi-
fication

• T5 [25] really big Transformer trained on Common Crawl filtered for English, then
fine-tuned on a lot of tasks all at once

• Multi-language versions of these

• Domain-specific versions of these
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11.4 RoBERTa

In August 2019 Facebook struck back with RoBERTa (Robustly Optimized BERT pretrain-
ing Approach) [18].

Key differences:

• Even more data. Everything in BERT (Book Corpus and Wikipedia = 16GB uncom-
pressed) plus Common Crawl news (76 GB after filtering) plus web text data linked to
from reddit with 3+ upvotes (38 GB) plus a subset of common crawl filtered to look
like winograd stories (31 GB).

• Unlike BERT, masking was done multiple times on sentences.

• Next Sentence Prediction as described in the BERT paper (but possibly not in the
implementation) seems to hurt, so it was removed. Just masking is used. (So what
happens to the CLS token training? Presumably only fine-tuning is used to make it
meaningful but this is somewhat unclear to me.)

• Using the same training settings as BERT, and the same data, RoBERTa was better.
When adding more data and training even longer it was even better.

11.5 BART?

It never stops! On October 29 2019 (a week before I wrote these notes) Facebook released
BART [17]. From an early look at the paper it is more of a denoising auto encoder structure
(i.e. translate noisy English into clean). It seems to be close to RoBERTa on the tasks
discussed but maybe better on generation-based tasks.

11.6 HuggingFace

A major aid to experimentation is HuggingFace (https://huggingface.co/) which has
come to prominence by making these models and others not discussed here available as
pretrained PyTorch with common user interfaces. They are relatively easy to use and it’s
easy to compare different models and see which works best on your task. Check them out
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at https://github.com/huggingface. (I have no relationship with this company, I’m just
happy they’ve made my students’ lives easier!)

11.7 Blade Runner NLP

In the movie Blade Runner, a hunter named Decker tried to find and terminate rogue robots
that were nearly indistinguishable from humans (see also the reboot of Battlestar Galactica,
the TV series The Americans, and numerous other Sci-Fi and non-sci-fi treatments of this
idea). He administers a test called the ‘Voight-Kampff Test’ where he asks questions that
AI, lacking full human sentiment and experience, could not answer ‘properly’ (and might
have an unrealistic skin/heart/iris response to). We might say that the GLUE tasks and
some others have become attempts to detect AI in models like the ones described above.
The next lecture goes through a selection of slides from Sam Bowman who has been looking
deeply at this problem. Here’s an example Voight-Kampff:4

4https://www.allthetests.com/quiz30/quiz/1386100782/Voight-Kampff-test-questions
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Chapter 12

Evaluation & Annotation

Nearly all of NLP benefits from a dispassionate analysis of how well the models we build
perform the analysis or generation of NL data we are trying to have them analyze/generate.
Aside from avoiding inherent bias and blindness toward a system’s quality (which can lead
to trouble down the road), there are circumstances where optimizing on the metric can be a
good way of improving performance. But understanding what correctness and incorrectness
is and how to measure these values can be tricky. Here we try to cover some of the key
methods of evaluation in NLP. Evaluating these models means having labeled data for them;
we’ll discuss strategies for collection too.

12.1 Quantitative Analysis

12.1.1 Development, Test, Blind

One way to build your system is to look at some labeled data, write code that tries to get
the right labels on that data, see what labels it’s getting incorrect, refine, repeat. At the
end you will have a system that does well on the corpus you looked at. But this often means
you will have neglected some phenomena present outside your training corpus. Worse, you
may engineer things so well on training that previously correctly labeled items outside of
your training corpus are now mislabeled.

This is called overfitting and it usually means you are taking advantage of some eccen-
tricity in your training data that does not generally hold (e.g. all sentences with an even
number of words are positive sentiment).

To avoid overfitting it’s a good idea to divide your data as follows: most (80-90%) is
used to build your model (train corpus), a sample (10-20%) is used to periodically evaluate
but not to build the model (dev corpus), and another sample (5-10%) is not looked at and
only used for evaluation, very very seldomly (test corpus). You can track overfitting: plot a
graph of training vs. dev performance over time; if dev starts to go down while train goes
up, that’s overfitting. How much to evaluate on test? It’s an art, honestly. The more you
do, the more you will probably overfit, and then you’ll need another test corpus to verify
this.

If you don’t have a lot of data, you can do what’s called cross-validation. You divide
up your data and evaluate. Then you slide the dividing lines to create another fold of the
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data. Keep doing this and every chunk of data gets to be train, dev, and test. Then average
the results. I think this has the tendency to lead to overfitting more quickly but it is not
infrequently used.

The extreme version of cross-validation is n-fold where n is the number of items you have;
this is called leave-one-out validation and allows the maximum amount of training data to
be used (but I trust it the least).

A hybrid strategy, where cross-validation is used for train and dev, but the test set is
held constant, is probably a good compromise.

The best scenario is when someone else holds on to a piece of the data for you and you
only ever get to see it once, when you’re totally done with your model. This corpus is called
‘blind’ and is usually only used in the context of shared tasks.

It’s important to consider how you divide your data. Ideally data should be independent
and identically distributed (IID). You might think random selection of labeled elements
would be suitable. For a collection of sentiment-labeled movie reviews this is true. However,
if your corpus is a set of documents, you don’t want to have one sentence from a document
in training and another in test. Words and phenomena tend to cluster in a document, since
a document is about some topic, with topic-relevant words, and is generally written by one
author, and will have a particular style. So best practice is to divide up along document
boundaries randomly, but pay attention to the number of evaluated items that get added to
each set.

Some notes on evaluation measures follow. The choice of evaluation measures is always
subject to debate (look at MT metrics workshops) but here are some guidelines I like to use:

12.1.2 Accuracy

For strict classification, where each item receives a label from a fixed set of labels, and the
distribution of labels is reasonably even (doesn’t need to be all the way even, but shouldn’t

be 90% one class), simple accuracy = correct
total

is a perfectly good metric.

12.1.3 F-Measure

For cases where there is one ‘background’ label that predominates and a relatively few
instances of a ‘content’ label (e.g. named entity recognition) F-measure, which combines
precision and recall, is a better choice, and is calculated on all labels except the background
label. Precision is correct

hypothesis
, i.e., how much of what you predicted is correct. Recall is

correct
reference

, i.e. how much of what was correct did you predict. Using either one by itself can
be misleading: why?

F1 is a harmonic mean of precision and recall. Specifically it’s 2 · PR
P+R

. In general

Fβ = (1+β2) PR
β2P+R

; F2 is weighted to favor recall, and F0.5 is weighted to favor precision. In

certain circumstances one may be preferred (e.g. precision is less important if there will be
a downstream selection task, while recall is less important if the task is to mine information
from a very large corpus and the amount of information mined is more important than
assurances it has all been mined).
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What is described above can be more specifically described as micro-averaged F1, i.e.
each non-background labeling is considered in making the tallies of what is correct, then the
averages are calculated. One can also consider macro-averaged F1, where F1 is calculated
for each kind of label (e.g. in named entity recognition, PERSON, then LOCATION) where
all other labels are considered to be background. These F1s are then averaged together.

Micro-F1 is the same as accuracy when there is no background class; Macro-F1 can be
done in these situations too if there is class imbalance (i.e. one dominant class is mostly
correct but you want to weight each class evenly instead of each item) Example:

Gold

Hypothesis

None Person Location Company Total
None N/A 0 5 10 15
Person 0 200 10 0 210
Location 0 5 40 0 45
Company 5 0 0 10 15
Total 5 205 55 20

Micro-averaged Precision: 200+40+10
270

= 0.926
Micro-averaged Recall: 200+40+10

280
= .893

Micro-averaged F1: 2 .926∗.893
.926+.893

= 2 ∗ .827/1.819 = .909

Macro-averaged precision:
200
210

+ 40
45

+ 10
15

3
= .836

Macro-averaged recall:
200
205

+ 40
55

+ 10
20

3
= .734

Macro-averaged F1: 2 .836∗.734
.685+.854

= 2 ∗ .614/1.539 = .782

12.1.4 Granularity

It’s important to consider what item is ultimately judged correct or incorrect. Even if each
word or sentence is labeled, it may make more sense for a sequence of adjacent labels to be
examined to consider whether an item is correct or not.

12.1.5 Rank-based evaluation

Sometimes you get to return more than one label, or you get to label your items in preferential
order (e.g. information retrieval). Sometimes your results are actually pretty bad but you
want to convey that your algorithm is better than random (e.g. unsupervised bilingual
lexicon induction). There are a few strategies for evaluating this kind of data:

Precision/Recall@N : Consider up to N ranked items. Careful – the way this metric is
implemented can vary! In e.g. information retrieval, P@N means you consider N items per
query and calculate precision over the N*Q total items retrieved. Howeer in e.g. bilingual
lexicon induction, P@N means if any of the N items retrieved is correct you consider the
entire item is correct, i.e. precision is calculated over Q total items retrieved. If P@N
monotonically increases with N, it’s the latter.

Precision@R: Especially in retrieval like cases, you can control the tradeoff between more
precision and more recall but adjusting your threshhold of returning an item. This would
numerically show the precision at a fixed recall. This can also be plotted to determine ideal
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operating points. A calculation of the area under the curve (AUC) is a good single number
that summarizes this tradeoff (higher is better).

12.1.6 Edit distance/word error rate

For structured output, especially text that is generated, the idea of ‘how much work does it
take to fix this’ is very relevant, especially if the task will be, say, a first pass before human
correction (this is very common in, say, the translation service industry). Given the number
of substitutions S, deletions D, and insertions I made over a text of length n, the error rate
(WER or TER for task T) is:

WER =
S +D + I

n

Variants assign different cost to different operations or operations involving different
components. For example, inserting/removing determiners might only cost 0.4 of an edit,
while doing so for content words could cost 2.3. These values are set experimentally.

12.1.7 Intrinsic Vs. Extrinsic Analysis

Intrinsic: evaluate the task on its own merits. E.g. parse F1, POS tag accuracy. Evaluation
‘close’ to the task. Advantage: directly evaluates the model you’re building. Disadvantages:
does it matter?

Extrinsic: evaluate the task as it plugs into some other task (e.g. parsing in the service
of summarization). Need to hold the other technology constant. There are different levels
of this (narrow = pos tagging for parsing; wide = machine translation for surgery outcome).
This also brings up the question of component vs. end-to-end evaluation. Should you
use a sequence of noisy components (more realistic, exposes problems of interaction, can
be tough to tell what actually causes the problem) or use ‘gold’ data at every point in the
pipeline before your tool (better for narrow debugging, doesn’t give a realistic picture)? Both
have their value. Don’t let something out before testing end to end, though.

12.1.8 Human judgments

The gold standard! Just like with machines, you have to tell humans how to evaluate. And
if the way you tell them to evaluate is too ‘weird’ you may not get results you like.

The major advantage is you can ask for judgement calls that are specifically something
machines can’t do. For example:

• Given one reference translation, ask them to edit a machine translation until it means
the same thing as the reference.

• Evaluate the sentiment of a text on a n-point scale

• Is a response sarcasm?

• ...
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There are a few drawbacks:

• Humans are slow compared to machines.

• Humans are expensive compared to machines.

• Humans are inconsistent.

The last one is maybe trickiest. The same human may give two different annotations.
Or two humans may be internally consistent but disagree with each other. There are ways
to improve agreement:

• Have several annotate and take the most frequent label (hopefully small label set)

• Have several annotate, then talk together and resolve differences

• Have several annotate, then have a super annotator resolve differences.

Ultimately, though, you want to track inter-annotator agreement (IAA):
Basic idea: ask n humans to annotate the same data. Check for their overlap. There are

several metrics, most based on this basic equation: P (a)−P (e)
1−P (e)

for agreement a and expected
agreement e. 1 for perfect agreement. 0 for chance agreement. Can be negative if agreement
is worse than chance.

• Cohen’s κ (only good for 2 humans): See below. What is a good value? Wide dis-
agreement. If you have to choose, at least 0.8 (but some might say 0.4).

• Scott’s π – same as Cohen’s κ but take squared arithmetic means to determine P (e).
Less informative than Cohen’s since it assumes equal distribution of responses.

• Fleiss’s Kappa (generalizes to n humans)...maybe 0.5 is ok? Generalization of Scott’s
π.

• Krippendorff’s α – more general. Also allows for missing data, partial agreement.
Quite complicated and computationally intensive to calculate.

Demo:
B B B total
pos neut neg

A pos 34 8 0 42
A neut 51 38 26 115
A neg 0 21 72 93

total 85 67 98 250
A used ‘pos’ 42 times = 42/250 = .168. B used it 85 times = 85/250 = .340. So the

expected probability of agreement for pos is .168 × .340 = .05712. Add up the probability
of chance agreements to get total P (e) = .05712 + .12328 + .145824 = .326224. P (a) =
34+38+72

250
= .576. Then κ = .576−.326224

1−.326224
= .3707.
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For Scott’s π but instead we calculate P (e) as 42+85
500

2
+ 115+67

500

2
+ 93+98

500

2
= .342936 so

κ = .576−.342936
1−.342936

= .3547
Note: IAA not really helpful for, e.g., translation. There you just want to collect many

different responses and use them all to evaluate.
Which to use? Often several are used together. Cohen’s over Scott’s, but Fleiss’ if needed,

α if extra mechanism needed. Statisticians might know more.

12.1.9 Statistical Significance

Ok, you have some results, automatic or human. But can you rely on them? Questions you
can ask yourself:

• Are the judgements actually measuring something real?

• Are they something that we care about?

• Is it from the domain/genre that we care about?

• Is it from the right distribution?

• Are there enough examples that we can trust it?

The last question is something we can answer. See also section 4.4.3 of Eisenstein and
the Berg-Kirkpatrick reading this narrative is taken from:

Let’s say we have two classifiers, A and B. A is better than B on some test set x by δ(x).
Null hypothesis H0: A is not actually better than B. If true, how likely is it that A would
be better than B on some new set x′ by at least δ(x)? If P (δ(x′) > δ(x)|H0) < 0.051 then
we can say with 95% confidence that H0 is rejected and indeed A is better than B. 0.05 is
called the p-value.

There are a variety of methods for establishing p-value, but one easy way that works
for lots of metrics and situations where we don’t have limitless test data is the following
bootstrap approach (Berg-Kirkpatrick et al. 2012):

1. Draw b boostrap samples y of size n from x with replacement.

2. Let s be 0

3. for each y, if δ(y) > 2δ(x), increment s

4. p ≈ s/b

What’s going on here? Since the samples are all drawn from the test set we in fact want
to show how often A is better than expected, and it’s expected to beat B by δ(x) since we
already know it does. In the original presentation of this work, b = 106 which showed stable
behavior of p calculation. This was done over a wide variety of task types.

1Actually a random variable X is used, not x′
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12.2 Annotated Task Corpora

If you want to know how well you’re doing on a task you should compare yourself to examples
of the task done correctly. A catch-all term for this is an ‘annotation’ (also a ‘labeling’) of
data. Here are some examples:

task input label
POS tagging The boy ran home DT NN VBD NN
constituency parsing The boy ran home (S (NP DT NN) (VP VBD

NN) )
dependency parsing The boy ran home 2-det 3-nsubj 0-root 3-

advmod
sentiment The boy ran home neutral
translation into french The boy ran home Le garçon a couru à la mai-

son
Some other kinds of annotation (the scope is limitless):

• phonetic: how was a word spoken, intoned, where were pauses taken, what words were
stressed

• semantic: mark words as they’re used with senses, draw semantic relatedness graphs

• pragmatics/discourse: what role does each turn play (e.g. acknowledgement, request
for feedback, acceptance, marker for new phase). Is a statement a thesis, antithe-
sis, elaboration, rebuttal, justification, etc? what are the discourse units? Resolve
anaphora – what do pronouns refer to? markers for attribution (something someone
else claimed happened), For more look at rhetorical structure theory (RST)

12.3 How to Gather Annotation

The lack of data has stymied many a project but I encourage you to think of it as an
opportunity, not a roadblock! Advice: “If you want to get a lot of citations, publish a
corpus.” (Philipp Koehn, prof. JHU. Very famous. Lots of released corpora.)

12.3.1 Found

Sometimes there is natively an annotation already in existence, though possibly not in quite
the right format. A simple case is that text reviews of movies often come with star ratings,
which can be turned into positive/negative sentiment. A more esoteric kind of found anno-
tation would be, say, using text spans in wikipedia that also contain page links that have
info boxes used for celebrities to determine the presence of a person mention in NE tagging.
Such methods can be quite powerful but are also quite noisy; they are often referred to as
‘silver standard’ for this reason.

Beware of using a found annotation that itself was programmatically generated or that
you programmatically generate from the data, this is circular reasoning and will lead you to
either create a trivial data set (e.g. list of descriptions of Japanese comic characters with
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annotation of whether they were originally anime or manga; labels generated by finding
which word comes first in the description) or one that is impossible to label (sentiment
labeled data; labels are chosen by running sentiment analysis). It sounds absurd but is
easier to accidentally create than you might think!

12.3.2 DIY

You can (and should) annotate some data yourself before trying to get other people to do
it. This will help you develop your guidelines and give you a sense of how difficult the task
is. However, it will still be an overestimate, because you may try to write down annotation
guidelines (see below) but there will be hidden assumptions that won’t come out until you
try to have someone else do the same annotation you’re doing

12.3.3 Phone a Friend

Just doing your own annotation is unwise; you could do consistent annotation but nobody
would be able to follow on since you won’t need to write a comprehensive standard. You
also will inherently be observing any test data you produce, so your systemns will be likely
to overfit. Asking someone to try to do the annotation (advisor, colleague in your lab) is
a good first test of your approach. It also gives you a way to judge IAA. If they are good
enough and the annotation is simple enough you can make a sufficiently sized corpus without
too much effort, you can have your friend’s annotations serve as a test set, and maybe they
can be a coauthor of your paper.

12.3.4 Hire

Once you want to get serious about annotation you’ll want to parallelize and increase your
throughput rate and diversity of annotator. Direct hiring (we can sometimes bring in MS or
undergrad student workers) has the main advantage that you can have fairly tight control
over your workers’ outputs, you can have them use custom tools quite easily, and you can get
and give a lot of feedback. If your annotation has special skill requirements (e.g. knowledge
of a particular language) this may be the best way to go. The downside is it can be tough to
find dedicated annotators, since most annotation is rather tedious. It can also be expensive;
you’ll be competing with other employers and your team is likely to be able to choose where
to work.

12.3.5 Crowd

Amazon Mechanical Turk and Figure 8 (formerly CrowdFlower) have made the job of hiring
pools of annotators much easier, but there are a number of caveats when working with
MTurk. First, it is not in practice as cheap as you might imagine. Ethically you should
pay a living wage; we use $15/hr as a minimum. You will get questions about this when
you publish and you may get pushback. You will also get lower quality work or no takers
if your rate is too low. In practice you can’t pay hourly, you have to pay by the piece.
This means your annotators will have much less appetite for reading very long annotation
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guidelines. It also means you need to calibrate your pay by getting test annotation and
estimating completion time.

Another major hassle is that there will be attempts to exploit you by not doing meaningful
work. Although you are allowed to not pay for work that is not done, rejecting work already
done for low quality will earn you a bad reputation, which will lower the quality and number
of workers. It is important to carefully vet workers by having them randomly annotate items
you already have the answers to and then validating their responses against these. You can
also have workers do an entire set you know the answer to, and if they do well, you can give
them specific qualification to do more work. For bots/non-workers, best bet is to simply not
hire them again.

If you are doing research in a lab, annotation via crowd work may be considered human
subjects research and require from one or more internal review boards (IRBs). This is more
of an issue for your PI than you but you should discuss it before proceeding.

Finally, your interaction with workers is more limited. The interface options are smaller
and conveying subtle differences in annotation standards can be tricky.

Caveats aside, using crowd workers is actually quite useful and sometimes the only way
to get annotation work done. It’s a good idea to try doing some crowd work to get a feel for
it!

12.3.6 Inter-Annotator Agreement

While annotating you’ll want to get IAA, in exactly the same way as you’d get IAA for
scores per above.

12.4 Annotation Guidelines

It is generally a good idea to write down your intended rules for how to annotate, in as plain
a language as possible. Note that this need not and should not be essentially a computer
program (otherwise it wouldn’t be an interesting NLP task) but can often be quite detailed.
The part of speech tagging guidelines for the Penn treebank, for example, are 37 pages long!
Guidelines are only effective if they’re followed, of course, so you have to judge how much
time your annotators will put in learning how to annotate. If you’ve hired them, with an
hourly wage, longer manuals will probably be okay. If they’re doing piece-work, e.g. in
mechanical turk, they aren’t going to spend time reading manuals and not getting paid.

Here are some classic examples. From the (37 page) PTB POS tag guidelines:
Adjective, superlative–JJS
Adjectives with the superlative ending -est (as well as worst) are tagged as JJS. Most

and least when used as adjectives, as in the most or the least mail, are also tagged as JJS.
Most and least can also be tagged as JJS when they occur by themselves; see the entries for
these words in Section 5. Adjectives with a superlative meaning but without the superlative
ending -est, like first, last or unsurpassed, should simply be tagged as JJ.

Typically, part way through the annotation, tricky cases will be uncovered, then resolved,
and added to the annotation standards, like was presumably done here:
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Words that refer to languages or nations, like English or French,

can be either adjectives (JJ) or proper nouns (NNP, NNPS).

EXAMPLES: English/JJ cuisine tends to be uninspired.

The English/NNPS tend to be uninspired cooks.

In prenominal position, such words are almost always adjectives (JJ).

Do not be led to tag such words as proper nouns just because they occur

in idiomatic collocations.

EXAMPLES: Chinese/JJ cabbage; Chinese/JJ cooking

Welsh/JJ rarebit; Welsh/JJ poetry

However, note:

EXAMPLE: an English/NP sentence

(cf. a sentence of English/NP)
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Chapter 13

HMMs: POS Tags Case Study

13.0.1 What are Part-of-Speech (POS) Tags?

Syntactic labels of words: This/DET is/VB a/DET simple/ADJ sentence/NOUN. These
abstract away from the core word meanings. Sequences (i.e. legal ordering) are mostly
(though not entirely) dependent only on the labels, not by the words themselves.

• Open class words (”content words”)

– nouns, verbs, adjectives, adverbs

– mostly content-bearing. refer to objects, actions, features in the world

– open class = there is no limit to what they are or can describe so new ones are
added all the time (email, website, defenestrate)

• Closed class words (”function words”)

– pronouns, determiners, prepositions, connectives

– there are a limited number of these

– mostly functional: to tie the concepts of a sentence together

How many? It depends. Some kind of annotation standard is needed to decide, e.g.,
should proper and common nouns be separated? Should singular or plural nouns? Presen-
t/past/main/aux verbs?

Penn treebank: fairly detailed set of tags (45 of them) used frequently along with parsing
(particularly constituent parsing). Some weird quibbles: why does ’to’ get its own tag?
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Morphologically rich languages will often have ‘morphosyntactic’ tags = detailed break-
down of how the word parts combine, such as ‘Noun+A3sg+P2sg+Nom’ with possibly thou-
sands of possibilities

Universal dependencies: 17 tags to try to catch phenomena that are distinct across all
languages (there is also a 12 tag variant):

ADJ adjective NUM numeral
ADP adposition PART particle
ADV adverb PRON pronoun
AUX auxiliary PROPN proper noun

CCONJ coordinating conjunction PUNCT punctuation
DET determiner SCONJ subordinating conjunction
INTJ interjection SYM symbol

NOUN noun VERB verb
X other

13.0.2 Why is it hard?

Why is it always hard? Ambiguity.
glass of water/NOUN vs water/VERB the plants
lie/VERB down vs tell a lie/NOUN
wind/VERB down vs a mighty wind/NOUN (note these last are homographs)

time flies like an arrow
NOUN VERB MODAL DET NOUN
VERB NOUN
ADJ NOUN VERB

What knowledge do we need?

89



1) A component deciding based on the word itself (some words only nouns, like arrow,
some words ambiguous, a priori tag probability)

2) A component deciding based on the tags of surrounding words (a sequence of two
determiners is rare, as is two base form verbs. Determiner almost always followed by adjective
or nouns

Could we just put this into a linear model, predicting one tag at a time?

13.0.3 Why do we care?

This is the first step toward full-sentence syntax (structure trees). POS tags can also be used
as input to tasks people do care about (sentiment analysis, word sense disambiguation).

In neural network land, could these be inferred automatically as ‘features’? With suffi-
cient data, it seems they can, yes. But often there isn’t enough data, and linguistic intuition
guides the search space, so that we can start off with prior knowledge of meaningful rela-
tionships between words.

More importantly, beyond text classification, this is a sequence labeling task, and the
approaches we learn here, are specifically helpful for this and other sequence labeling tasks,
of which here are two:

• Named Entity Recognition (NER): label words as beginning to persons (PER), orga-
nizations (ORG), locations (LOC), or none of the above: Barack/PER Obama/PER
spoke/N from/N the/N White/LOC House/LOC today/N ./N

• Information field segmentation: Given specific text type (e.g. classified ad), find which
words belong to which ”fields” for db creation (price/size/location, author/title/year):
3BR/SIZE apt/TYPE in/N West/LOC Adams/LOC ,/N near/LOC USC/LOC ./N
Bright/FEAT ,/N well/FEAT maintained/FEAT ...

Key features of sequence labeling: Correct label depends on

• item to be labeled (NER: Smith is probably a person. POS: chair is probably a noun)

• labels of surrounding items (NER: if following word is an organization (e.g. Corp.),
then this word is more likely to be an organization. POS: if preceding word is a modal
verb (e.g. will), then this word is more likely to be a verb)

The Hidden Markov Model (HMM) combines these sources probabilistically.

13.0.4 Bayes’ Law and Assumptions again

For word sequence W = w1, . . . , wn we want the most likely tag sequence T = t1, ..., tn, i.e.

argmaxT P (T |W ) = argmaxT P (W |T )P (T )

Then we make some simplifying assumptions:

1)P (W |T ) = P (w1, . . . , wn|t1, . . . , tn) = P (w1|w2, . . . , wn, t1, . . . , tn)P (w2| . . .) . . . P (wn|t1, . . . , tn)
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≈ P (w1|t1)P (w2|t2) . . . P (wn|tn)

In other words we assume independence of all words and tags except wi and ti.

2)P (T ) = P (t1, . . . , tn) = P (tn|tn−1, . . . , t1)P (tn−1|tn−2, . . . , t1)

≈ P (tn|tn−1)P (tn−1|tn−2) . . . P (t2|t1)P (t1)

In other words we assume a tag is conditioned only on the previous tag. This is called
the ‘Markov’ assumption.

We call P (W |T ) the emission probability and P (T ) the transition probability. A plate
diagram helps (this is fig. 7.2 of Eisenstein):

Small implementation note: there’s no specific conditioning on the beginning or ending
of a sentence, but it does seem like a good kind of probability to have. So in practice we can
imagine sentences all beginning with, e.g. ‘BOS’ and ending with ‘EOS’. Note the probability
of the first tag is P (t1) with no conditioning, but since the first tag is always the same (and
the same word is always drawn from it) we don’t need to include those probabilities. It is,
however, helpful to know P (t2|BOS) and to include a proper draw for ending, i.e. P (EOS|tn).

These probabilities are generally learned empirically and then smoothed (it’s much more
important to smooth the emission probabilities...why?). Here are tables of empirically
learned probabilities (these are from Jurafsky and Martin):

So here are the probabilities that would be used to calculate the probability of the tagged
sentence Time/NOUN flies/VERB like/MODAL an/DET arrow/NOUN:

BOS Time flies like an arrow EOS
P (N|BOS) P (V|N) P (M|V) P (D|M) P (N|D) P (EOS|N)
P (time|N) P (flies|V) P (like|M) P (an|D) P (arrow|N)

13.0.5 Viterbi Search

Things become tricky when trying to tag a new sequence; we want, remember, argmaxT P (W,T )
but finding this requires searching over the exponential number of sequences; even for a 5
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word sequence over the 17-tag UD set, that’s 175 = 1, 419, 857 sequences. We turn instead to
the Viterbi algorithm, a dynamic programming algorithm which uses the following intuition:

If we are at word n− 1 and have already calculated the best tag sequence ending in each
of the 17 tag types at word n−1, then the best tag sequence to word n (which has tag EOS)
is one of 17 options: the best tag sequence to word n− 1 ending in tag 1 times the score for
tag 1 to EOS, etc.

But the best tag sequence to tag 1 at word n − 1 is one of 17 options: the best tag
sequence to n − 2 ending in tag 1 times the score for transition from tag 1 to tag 1 (times
the emission for word n− 1 with tag 1), etc.

To make things complete, we assume all sequences start with a special BOS word that
has an emission probability of 1 for the BOS tag

It’s helpful to work through the following chart using the provided statistics; we’ll do this
in class (note that in code you probably want to add logs instead of multiplying probs):

for t in range ( t a g s e t ) :
s c o r e [ t ] [ 0 ] = emis [BOS ] [ t ]

for i , w in enumerate ( words [ 1 : ] ) :
for t in range ( t a g s e t ) :

s c o r e [ t ] [ i ] = max( s c o r e [ : , i −1]∗ t rans [ t , : ] ∗ emis [w ] [ t ] )

trans N V D P A EOS
BOS .3 .1 .3 .2 .1 0
N .2 .4 .01 .3 .04 .05
V .3 .05 .3 .2 .1 .05
D .9 .01 .01 .01 .07 0
P .4 .05 .4 .1 .05 0
A .1 .5 .1 .1 .1 .1

emis BOS a cat doctor in is the very
BOS 1 0 0 0 0 0 0 0
N 0 0 .5 .4 0 .1 0 0
V 0 0 0 .1 0 .9 0 0
D 0 .3 0 0 0 0 .7 0
P 0 0 0 0 1 0 0 0
A 0 0 0 0 .1 0 0 .9

v w0=BOS w1=the w2=doctor w3=is w4=in EOS
BOS 1 0 0 0 0 0
EOS 0 0 0 0 0 .000027216
N 0 0 .0756 .001512 0 0
V 0 0 .00021 .027216 0 0
D 0 .21 0 0 0 0
P 0 0 0 0 .0054432 0
A 0 0 0 0 .00027216 0

13.0.6 OK, but what about more interesting features and discrim-
inative models?

In fact, we can use the perceptron algorithm here, just as we used it for simple whole-text
label prediction. Let’s revisit perceptron:

def t r a i n ( l a b e l e d s e n t e n c e s , opt ions , f e a t s i z e ) :
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# shou ld be a b e t t e r way to determine f e a t s i z e
# p r o b a b l y want to i n i t i a l i z e d i f f e r e n t l y
model = { ’ theta ’ : np . random ( f e a t s i z e )}
for i in range ( i t e r a t i o n s ) : # user−determined

for sentence , l a b e l in l a b e l e d s e n t e n c e s :
hyp = c l a s s i f y ( sentence , opt ions , model )
i f hyp != l a b e l :

model [ ’ theta ’ ] += f e a t u r e s ( sentence , l a b e l )− f e a t u r e s ( sentence , hyp )
return model

def c l a s s i f y ( sentence , opt ions , model ) :
s c o r e s = {}
for opt ion in opt ions :

s c o r e s [ opt ion ] = eva luate ( sentence , option , model )
return max( s c o r e s . i tems ( ) , key=operator . i t emge t t e r ( 1 ) ) [ 0 ]

The real problem is the classify function, which I included here, or actually the options
set. The point of classify is to find the maximum scoring sequence over all options. In
sentiment classification there were only three sentiments, so you could just do 3 lookups and
choose the best. But if there are t possible tags and the sequence is n words long, there are tk

possible sequences. Thankfully, dynamic programming in general (and the Viterbi algorithm
specifically) lets us efficiently find the maximum score sequence. This then becomes what is
known as structured perceptron since you are ultimately learning to predict the structured
sequence of labels, and not just a single label at a time. We are no longer constrained to the
emission and transition probabilities.

Here is the viterbi algorithm, rewritten to use general features, assuming an appropriate
current θ and a feats function which returns features based on the last label t′, the current
word w, and the proposed current label t (column vector notation won’t work here but the
complexity hasn’t increased despite the deeper nesting):

for t in range ( t a g s e t ) :
s c o r e [ t ] [ 0 ] = theta ∗ f e a t s ( emptyset , BOS, t )

for i , w in enumerate ( words [ 1 : ] ) :
for t in range ( t a g s e t ) :

s c o r e [ t ] [ i ] = − i n f t y
for s in range ( t a g s e t ) :

s c o r e [ t ] [ i ] = max( s c o r e [ t ] [ i ] , s c o r e [ s ] [ i −1]∗ theta ∗ f e a t s ( s , w, t ) )

What about logistic regression? Yes, this can be done as well (logistic regression over
structures is called conditional random fields and the specific dependencies we allow make
this a linear chain conditional random field), but it again requires efficiency changes, now to
both inference and learning. For inference we have already seen how to efficiently calculate;
the Viterbi algorithm is used to determine the argmax sequence. Because of the probabilistic
nature of logistic regression, we need to calculate the sum of all scores (the denominator of
softmax); this is an important component in gradient calculation. This can be calculated with
a slight variant to the Viterbi algorithm called the Forward algorithm and its counterpart,
the Backward algorithm.

Compare the Forward algorithm to the previous Viterbi algorithm:
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for t in range ( t a g s e t ) :
s c o r e [ t ] [ 0 ] = theta ∗ f e a t s (\ emptyset , BOS, t )

for i , w in enumerate ( words [ 1 : ] ) :
for t in range ( t a g s e t ) :

s c o r e [ t ] [ i ] = 0
for s in range ( t a g s e t ) :

s c o r e [ t ] [ i ] += sco r e [ s ] [ i −1]∗ theta ∗ f e a t s ( s , w, t )

This calculates the partial score of all sequence labels from word 0 to t. The Backward
algorithm does the same calculation, but starts at the end of the sequence:

for t in range ( t a g s e t ) :
s c o r e [ t ] [ n ] = 1

for i , w in reversed (enumerate ( words ) ) :
for s in range ( t a g s e t ) :

s c o r e [ s ] [ i ] = 0
for t in range ( t a g s e t ) :

s c o r e [ s ] [ i ] += sco r e [ t ] [ i +1]∗ theta ∗ f e a t s ( s , w, t )

Rather than directly calculate features, naturally, we can use neural networks, and this is
in practice what is done today. However, the issue of exponential search still applies. Features
are calculated via a bidirectional RNN (see chapter 8) and those features are provided to a
CRF. The whole thing is differentiable and can be learned jointly (and is implemented using
frameworks like PyTorch). The set of features for each possibility is also calculatable via the
same dynamic programming approach used to calculate Forward/Viterbi.
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Chapter 14

Constituency Parsing

14.0.1 First a little formal language theory

From a formal perspective a language is a (possibly infinite) set of strings (or sentences),
where each string is made up of words from an alphabet (or vocabulary). This definition is
amenable beyond human languages and has been applied to e.g. computer languages, DNA
chains, and mathematical sequences. Much of formal language theory is concerned with the
formal devices used to represent these languages.

14.0.2 Finite State Automata and Transducers

A weighted finite-state automaton (wFSA) is one such device. It is a 5-tupleM = (Q,Σ, λ, ρ, δ)
where Q = {q1, q2, . . . , qm} is a finite set of states, Σ is a finite input alphabet of sym-
bols, λ : Q → R is an initial weight function, ρ : Q → R is a final weight function, and
δ : Q × Σ × Q → R is a transition function. Multiplication of λ for the chosen start state,
iterated applications of δ, and ρ for the ending state yield the weight of the string formed by
concatenating the series of Σ elements produced in the repeated applications of δ. FSAs and
their unweighted counterparts have all kinds of nice properties such as closure under union,
concatenation, intersection, and efficient best path, and are the mechanisms driving regular
expressions.

Here are two simple wFSAs: the first recognizes any sequence of ‘a’ or ‘b’ that is of even
length (for simplicity’s sake, the weights of each member of λ, ρ, and δ can be said to be 1
if the item appears, and 0 if it does not):

Q2 = {q1, q2}; Σ = {a, b}, λ = {q1}, ρ = {q1}, δ = {(q1, a, q2), (q1, b, q2), (q2, a, q1), (q2, b, q1)}
The second recognizes any sequence of ‘a’ that is of length divisible by 3:
Q3 = {q7, q8, q9}; Σ = {a}, λ = {q7}, ρ = {q7}, δ = {(q7, a, q8), (q8, a, q9), (q9, a, q7)}
Their intersection recognizes any sequence of ‘a’ that is of length divisible by 6. Inter-

secting with a simple wFSA that recognizes exactly one string will yield either a wFSA with
no transitions, indicating the string is not in the language, or a wFSA that returns that one
string, indicating it is in the language. If the wFSA is probabilistic, then the string will be
recognized with the probability it occurs in the language.

Finite-state machines can be used to e.g. represent HMMs, though to show this it is
better to introduce a generalization, weighted finite state transducers (wFST):
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A weighted finite-state transducer is a 6-tuple M = (Q,Σ,Ω, λ, ρ, δ) where Ω is a finite
alphabet of output symbols, δ : Q × Σ ∪ {ε} × Ω ∪ {ε} × Q → R is the revised transition
function, and all other items are as before. ε is a special alphabet symbol which indicates
no symbol is read/written. wFSTs are closed under composition, so if you have wFSTs M1

and M2, you can build M3 which behaves as M1(M2), i.e. passing a string through the chain
of transducers. This allows for the bigram HMM to be fairly cleanly written:

Mtrans =

Q = {qx∀x ∈ Σ ∪ {qSTART, qEND}}
Σ = {Penn Treebank POS tags}
∆ = Σ

λ = {qSTART → 1}
ρ = {qEND → 1}
δ = {(qi, j, j, qj, P (j|i))∀i, j ∈ Σ× Σ}∪

{(qSTART, i, i, qi, P (i|START))∀i ∈ Σ}∪
{(qi, ε, ε, qEND, P (END|i))∀i ∈ Σ}

Memit =

Q = {q}
Σ = {Penn Treebank POS tags}
∆ = {Vocabulary}

λ = ρ = {q → 1}
δ = {(q, i, j, q, P (j|i))∀i, j ∈ Σ×∆}

14.0.3 Pushdown automata and context-free grammars

Some languages cannot be recognized by FSAs. For instance, the language anbn, i.e. n
‘a’ followed by n ‘b’, for arbitrary n. More practically, the language consisting of strings
with balanced parentheses (and possibly other symbols) is also not recognizable by FSAs.
The proof of this is quite elegant (it involves something called the ‘pumping lemma’). This
is particularly troubling to us because we would like to bracket sentences into hierarchical
syntactic chunks.

For example,
[[We/PRP]NP [would/MD [like/VB [[to/TO [bracket/VB [sentences/NNS]NP [into/IN

hierarchical/JJ syntactic/JJ chunks/NNS]PP ]V P ]V P ]S]V P ]V P ./.]S
This is somewhat more elegantly (but less compactly) written as in Figure 14.1.
A mechanism that can represent such languages is the weighted pushdown automaton,

which is like an FSA but with a stack. However it’s far more common to see these languages
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S

NP

We/PRP

VP

would/MD VP

like/VB S

VP

to/TO VP

bracket/VB NP

sentences/NNS PP

into/IN NP

hierarchical/JJ syntactic/JJ chunks/NNS

Figure 14.1: Syntactic Tree

written in an equivalent formalism, the weighted context-free grammar (wCFG). This is a
4-tuple (N,Σ, R, S) where N is a set of non-terminal symbols, σ is a set of terminal symbols,
S ∈ N is a designated start symbol, and R : N×(N∪Σ)∗ → R are the production rules. Here
is a CFG (weights of productions shown assumed to be 1) for anbn (N = {S},Σ = {a, b}):

S → ab

S → aSb

Here are the productions that can be used to form the tree in Figure 14.1 (excluding tags
for POS to word; POS listed in lowercase):
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S → NP V P .

S → V P

NP → prp

NP → nnsPP

NP → jj jj nn

V P → mdV P

V P → vb S

V P → to V P

V P → vbNP

PP → inNP

14.0.4 Penn Treebank

Built in the 90s at Penn, for about 1 million dollars. 1 million words in about 40,000 sentences
of WSJ text. First large scale analysis of naturally occurring syntax (other components
include much more POS tagging, speech annotation). Compared to the POS tag set, there
are many fewer tree labels:

However, the annotation guide for the treebank is 318 pages long (compared to 37 for
POS tags).

This was meant to be a documentation of how people really constructed (English, largely
news) sentences rather than being told what was and was not done by linguists. Also now
we could think, if given a new sentence, can we automatically annotate it in the same way?

BTW, the treebank is divided into sections, and it’s common for people to train on
sections 2-21, use dev for section 22, and evaluate on section 23. This has enabled comparable
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Figure 14.2: Two parses of a sentence

results over about 25 years, but there is concern that we’ve overfit on this data set by now!
There are other treebanks that have been constructed, for other languages, and for English,
but none is as consistent or large as Penn Treebank.

14.0.5 Evaluation

Parsing scores are typically given as an F1 measure, comparing gold (i.e. reference) to
hypothesis brackets. Let’s assume the left side of Figure 14.2 is the gold sentence and the
right side is the hypothesis. Then, the brackets for each are:

gold hyp
(S 0 7) (S 0 7)
(NP 0 1) (NP 0 1)
(VP 1 7) (VP 1 7)
(NP 2 4) (NP 2 7)
(PP 4 7) (NP 2 4)
(NP 5 7) (PP 4 7)

(NP 5 7)
F1 is the harmonic mean of recall and precision. In such a scenario we can divide

up items in a response into correct (items in hypothesis and reference), missed (items in
reference but not hypothesis), and spurious (items in hypothesis but not reference. Precision

is correct
correct+spurious. Recall is correct

correct+missed
. F1 = 2 · precision·recall

precision+recall
.

In the example above, 6 items are correct, one is spurious, and none are missed. Thus
the precision is 6/7 = .857, the recall is 6/6 = 1.0, and the F1 is .923.

Given a grammar and a sentence, how do we efficiently find a parse tree for that sentence?
More importantly, how do we find the most likely parse tree? The core of those answers
are in the CKY algorithm, a bottom-up dynamic programming algorithm. CKY requires
rules be in a special form called ‘Chomsky Normal Form’ (CNF) that only allows rules of
the following form:

X → Y Z

X → a
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where X, Y, Z are nonterminals and a is terminal. There must be exactly two nonterminals on
the RHS of a rule or there can be exactly one terminal. Although there are well established
techniques for converting, for now let’s assume we already have a grammar in this form.

Here’s the core algorithm (see also alg. 13 on p. 241 of eisenstein):

chart = d e f a u l t d i c t (lambda : d e f a u l t d i c t ( set ) ) # s t a r t −>end−> l a b e l s
bpt = d e f a u l t d i c t (lambda : d e f a u l t d i c t ( set ) ) # s t a r t −>end−>b a c k p o i n t e r s
for w in range (1 , len ( sent )+1): # width

for s t a r t in range ( len ( sent )−w+1):
end = s t a r t+w
i f w == 1 :

for l h s in terms [ words [ s t a r t ] ] :
chart [ s t a r t ] [ end ] . add ( l h s )

else :
for mid in range ( s t a r t +1, end ) :

for rhs1 in chart [ s t a r t ] [ mid ] :
for rhs2 in chart [ mid ] [ end ] :

for l h s in nterms [ rhs1 ] [ rhs2 ] :
chart [ s t a r t ] [ end ] . add ( l h s )
bpt [ s t a r t ] [ end ] . add ( ( mid , rhs1 , rhs2 ) )

Let’s work it out with a small example:

When done you should have this:
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14.0.6 Building probabilistic grammars

How do we actually get grammars? We can read them off of the trees in the treebank.
As seen above, these are not always in CNF. Simpler than changing the grammar, we can
modify the trees themselves. We can do the same with unary chains, collapsing them.

How to choose probabilities for grammar rules? To be probabilistic, the sum of all
rules with the same LHS should be 1.0; given that we’re still being generative here, this is
P (T |W )P (T ) = P (T,W ) and with the chain rule and markov and independence assumptions
as before, we ultimately want a set of P (RHS|LHS) probabilities to multiply. We calculate
these empirically from the corpus. We then can modify our CKY algorithm above to calculate
weights and choose the maximum for every LHS in a cell.

Here is the example from above with weights to work through:
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And here it is filled out:

The analogue to the forward algorithm, the inside algorithm, computes the partition
function (sum of probabilities of all trees) by replacing max with add.

Next time: head lexicalization, dependency parsing.
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Chapter 15

Constituency Parsing Continued

Last time we went through the mechanics of using CKY and viterbi to find a parse tree and
simple maximum likelihood to get probabilities for the grammar components.

Turns out this gets us parse scores of around 73% which is not good; modern parsers
are in the mid-90s. Why? Both because the rules extracted from trees are too specific and
because they’re not specific enough!

15.0.1 Too Specific – Markov binarization

Consider the tree:

(NP

(DT the)

(JJS tallest)

(NN steel)

(NN building)

(NN antenna)

(PP

(IN in)

(NP

(NNP America))))

This yields the rule

NP -> DT JJS NN NN NN PP

which is totally useless for

(NP

(DT the)

(JJS tallest)

(NN building)

(PP

(IN in)

(NP

(NNP America))))
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Previously I (hopefully in class, but not in notes) mentioned that changing the trees is
an easy way to get into CNF. For perfect reconstruction you can do this by introducing
one-time nonterminals, e.g.

(NP

(DT the)

(T145-1

(JJS tallest)

(T145-2

(NN steel)

(T145-3

(NN building)

(T145-4

(NN antenna)

(PP

(IN in)

(NP_NNP America)))))))

Which you could also label by the pattern of the RHS being replaced.

(NP

(DT the)

(DT^JJS^NN^NN^NN-1

(JJS tallest)

(DT^JJS^NN^NN^NN-2

(NN steel)

(DT^JJS^NN^NN^NN-3

(NN building)

(DT^JJS^NN^NN^NN-4

(NN antenna)

(PP

(IN in)

(NP_NNP America)))))))

But these aren’t terribly flexible. If we introduce reusable nonterminals we can get more
flexible rules. For instance, we can remember just the nonterminal we’re in and the pos tag
to our left:

(NP

(DT the)

(NP^DT

(JJS tallest)

(NP^JJS

(NN steel)

(NP^NN

(NN building)
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(NP^NN

(NN antenna)

(PP

(IN in)

(NP_NNP America)))))))

This gives us rules like

NP^JJS -> NN NP^NN

which are useful in the smaller sentence.

15.0.2 Not Specific Enough I: modeling parent-child behavior

Let’s say we saw:

(NP

(NP the man)

(PP in the car))

90 times (eliding the unimportant details of the trees)
and

(NP

(NP the man)

(PP in the car)

(PP with the dog))

10 times. Using MLE, we get

NP -> NP PP 90/200 = .45

NP -> NP PP PP 10/20 = .05

(NP -> DT NN 100/20 = .5)

What happens if we then want to parse ‘the man in the car with the dog’? The sentence
seen in training scores .05 for the combining rule, while this parse:

(NP

(NP

(NP the man)

(PP in the car))

(PP with the dog))

scores .45 × .45 = .2020 for the combining rules! This shouldn’t be! A tree not seen in
training scores higher than the exact tree seen in training!

What can we do? Annotate with more context – give nonterminals their parent symbols
as well:
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(NP^VP

(NP^NP the man)

(PP^NP in the car))

and

(NP^VP

(NP^NP the man)

(PP^NP in the car)

(PP^NP with the dog))

Now the rule

NP^VP -> NP^NP PP^NP

can’t be used twice!

15.0.3 Not Specific Enough II: modeling lexical behavior

It turns out words do matter! Consider:

(S

(NNS workers)

(VP

(VP

(VBD dumped)

(NP

(NNS sacks)))

(PP

(IN into)

(NP

(DT a)

(NN bin)))))

seems correct. The dumping is into a bin. Consider an alternative:

(S

(NNS workers)

(VP

(VP

(VBD dumped)

(NP

(NP

(NNS sacks))

(PP

(IN into)

(NP

(DT a)

(NN bin)))))
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They dumped a thing called “sacks into a bag.” Seems wrong.
Which is more likely? It comes down to the difference between these two rules:

VP -> VP PP

NP -> NP PP

Both are good. Neither are directly compared. This seems arbitrary. But PPs with
‘into’ have a strong preference to be attached to VPs, not NPs. Consider if it was instead
“tomatoes from the outbreak” (which all have the same POS tags as “sacks into a bag”).
What to do? Annotate labels with their lexical ‘heads.’ What’s a head? the most important
word in a phrase. How are these determined? Rules, actually. That were written down in
1995.1 Here’s an example for VP: [VBD VBN MD VBZ TO VB VP VBG VBP ADJP NP].
Use the leftmost of the first of these categories, if it appears. If it doesn’t use the left most
of the next one and so on. Following the rules you get:

(S/dumped

(NNS/workers workers)

(VP/dumped

(VP/dumped

(VBD dumped)

(NP/sacks

(NNS/sacks sacks)))

(PP/into

(IN/into into)

(NP/bin

(DT/a a)

(NN/bin bin)))))

Now we are comparing these rules

VP/dumped -> VP/dumped PP/into

NP/sacks -> NP/sacks PP/into

The first seems much more likely.
(In an older version of this course we’d now have to talk about how there aren’t likely

to be sufficient statistics to estimate these fairly fine-grained rules, so we’ll have to add
smoothing. The smoothing for parse trees can be quite complicated and would take one
lecture at least, but using neural approaches ends up allowing us to skip over all of that.)

Lexicalization proved very important! So important that there isn’t a lot of constituent
parsing research any more since a new formalism for syntax became dominant...dependency
trees!

1http://www.cs.columbia.edu/~mcollins/papers/heads
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Chapter 16

Dependency Parsing

16.1 Why dependencies?

It turns out lexicalization is pretty important to syntactic parsing. This is at first a bit
surprising, since syntax is concerned with the order of words and not their content. The
famous sentence ‘Colorless green ideas sleep furiously’ (Chomsky 1957) is an example of a
syntactically valid but semantically vacant sentence. It clearly has a parse:

(S

(NP

(JJ colorless)

(JJ green)

(NN ideas))

(VP

(VBP sleep)

(RB furiously)))

But as we previously saw, rules like S -> NP VP without lexicalization can lead to lots
of apparent ambiguity.

Another problem is that not all syntactic behavior occurs in contiguous phrases. This
is particularly true in languages with free word order but even occurs in English; e.g. ‘The
hearing is scheduled on the issue today.’ There is a relationship between ‘on the issue’ and
‘the hearing’ but that relationship isn’t really expressible with contiguous phrases only.

Finally, as sentence length grows a significant part of the parse is far from the word level
and this, it turns out, is less helpful in downstream tasks. We mostly want to know the
relationship between words in a sentence. Specifically the connection between phrases and
the heads of sub-phrases contained within them is important.

What is a head? This is actually a tricky linguistic question. Informally it’s:

• The most important word in a phrase

• The main content word in a phrase

• The word that determines the phrase’s label
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• The word that other phrases have to agree with (e.g. in case or gender)

This can sometimes lead to inconsistencies. In the prepositional phrase ‘with the mayor’
is ‘with’ the head (determines the label) or is ‘mayor’ (the main content word)? It depends
on which linguist you ask; the rules behind the Penn treebank say the preposition, while
the rules behind universal dependencies say the noun. As long as you use consistent head
finding you will be okay.

16.2 What are dependencies?

Here is an example for the sentence ‘She wanted to buy and eat an apple’ (from the UD
guidelines):

1 she 2 nsubj
2 wanted 0 root
3 to 4 mark
4 buy 2 xcomp
5 and 6 cc
6 eat 4 conj
7 an 8 det
8 apple 4 obj
9 . 2 punct

Pictorially we can represent it like so (using the amazing tikz-dependency package):

she wanted to buy and eat an apple .

root

nsubj mark

xcomp

cc

conj

det

obj

punc

Or this:
wanted

she buy

to eat

and

apple

an

.

• Every word in a sentence except one has one parent (or governor) word, which is the
head of the smallest syntactic unit it is not the head of. A word may have zero or more
words that consider it their head.

109



• The word which has no head is the root of the sentence.

• Each parent-child relationship may be annotated with a label connoting the role of the
phrase the child is the head of. There are 37 such label types in universal dependencies.

The consequences of these requirements (particularly the first two) is that this will form
a tree. There is an extension to this formalism called enhanced dependencies that annotates
more relationships and forms graphs (i.e. words can have more than one head). We won’t
discuss them here.

16.3 Conversion from Constituencies, planarity, and

projectivity

What is the relationship between constituencies and dependencies? You can convert a con-
stituent tree into a (unlabeled) dependency tree as follows:

S

NP

PRP

she

VP

VBD

wanted

S

VP

TO

to

VP

VB

buy

CC

and

VB

eat

NP

DT

an

NN

apple

1. Head-lexicalize the tree
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S/wanted

NP/she

PRP/she

she

VP/wanted

VBD/wanted

wanted

S/buy

VP/buy

TO/to

to

VP/buy

VB/buy

buy

CC/and

and

VB/eat

eat

NP/apple

DT/an

an

NN/apple

apple

2. remove phrase labels

wanted

she

she

she

wanted

wanted

wanted

buy

buy

to

to

buy

buy

buy

and

and

eat

eat

apple

an

an

apple

apple

3. merge children into parents with same label
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wanted

she buy

to and eat apple

an

Notice it’s not the same dependency as above! This is because the original example
was annotated as a dependency and this is converted from another structure, with different
annotation standards and possibly different head rules.

Converting from dependencies to constituencies is in general not possible. Apart from
the labeling problem (which also exists in the other direction) there is too much ambiguity
introduced in the simpler dependency structure. More importantly, dependencies cannot be
converted at all if they are not planar 1, i.e. if the arcs cross when the words are arranged in
order. Such a tree is non-projective. Here is an example:

A hearing is scheduled on the issue today

root

det

nsubj:pass

aux:pass

case

det

nmod

nmod:tmod

Thankfully non-projective dependencies are pretty rare in English.

16.4 Parsing Methods

It turns out that parsing methods for dependencies are often a lot faster than those for con-
stituencies. The one we will discuss, shift-reduce, is linear-time and greedy (though it can be
beamed) and can take a wide variety of features. It doesn’t handle non-projectivity, however.
The second one, Chiu-Liu-Edmonds, is quadratic and optimal but somewhat limited in its
feature set. We won’t discuss it in detail but I provide several pointers.

16.4.1 Shift-Reduce

Big idea of shift-reduce parsing: you keep a stack of words/partial structures you are pro-
cessing and a buffer of words you haven’t started processing yet. At each time step you do
some work (an operation) at the top of the stack. In ‘arc-standard’ parsing there are the
following operations:

• SHIFT = move a word from the buffer to the top of the stack

1misleading to those very familiar with graph theory; see Kuhlman 1998
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• LEFT-ARC-label = top of stack is parent of second in stack; add label ; top of stack
stays in (pop 2nd)

• RIGHT-ARC-label = second in stack is parent of top in stack; add label ; second in
stack stays in (pop top)

So this becomes a classification problem with 1 + 2× labels choices. We’ll get into what
makes good features for this but it’s first helpful to walk through a parse. Additionally, in
order to train a classifier you need a lot of examples of a configuration and a choice of label.
There is a general procedure for converting from a dependency tree into the sequence of
parse steps that will form it. Using the tree as a guide:

• If stack[0] is the parent of stack[1] with label l, LEFT-ARC-l.

• If stack[1] is the parent of stack[0] with label l and no dependents of stack[0]

are still in the buffer, RIGHT-ARC-l.

• Otherwise, SHIFT

Here is an example parse tree (unlabeled) and a walkthrough; we’ll go over it in class:

book the flight through houston

root

ROOT book the flight through houston SHIFT
ROOT book the flight through houston SHIFT
ROOT book the flight through houston SHIFT
ROOT book the flight through houston LEFT the ← flight
ROOT book flight through houston SHIFT
ROOT book flight through houston SHIFT
ROOT book flight through houston LEFT through ← houston
ROOT book flight houston RIGHT flight → houston
ROOT book flight RIGHT book → flight
ROOT book RIGHT ROOT → book
ROOT Done

A potential problem is that shift-reduce is greedy and an early bad decision can lead to
later problems. We can beam, i.e. consider k possibilities simultaneously. We then consider
the k best successors of these, trim back to only k, and continue. This is still linear in
sentence length, i.e. nk2.

Another problem is that arc-standard is strictly ‘bottom-up’ in that it is cautious, par-
ticularly about RIGHT, e.g. waiting a long time after seeing the initial ‘book flight’ to make
that arc. The useful features could be inaccessible to a classifier. A variant, called ‘arc-eager’
seeks to improve things. It has slightly different definitions and one more operation:

• SHIFT = (as before) move a word from the buffer to the top of the stack
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• LEFT-ARC-label = top of buffer is parent of top in stack; add label ; top of stack is
popped.

• RIGHT-ARC-label = top of stack is parent of top in buffer; add label ; shift buffer to
stack

• REDUCE = pop the top of the stack

The heuristics for converting from a tree to an instruction are simpler; if the top of the
buffer is parent to the top of the stack, do LEFT; if the top of the stack is parent to the
top of the buffer, do RIGHT; otherwise if you can SHIFT, do it, otherwise REDUCE. Here’s
how the parse goes under arc-eager:

ROOT book the flight through houston RIGHT ROOT → book
ROOT book the flight through houston SHIFT
ROOT book the flight through houston LEFT the ← flight
ROOT book flight through houston RIGHT book → flight
ROOT book flight through houston SHIFT
ROOT book flight through houston LEFT through ← houston
ROOT book flight houston RIGHT flight → houston
ROOT book flight houston REDUCE
ROOT book flight REDUCE
ROOT book REDUCE
ROOT Done

Neural Dependency Parser (HW3)

An excellent application of neural networks to dependency parsing is the work of Danqi
Chen (student of Manning, now professor at Princeton) from 2014 (ancient history!). It’s
pretty straight-forward and still uses hand-engineered features; the trick is that it uses a lot
of them, and the neural network takes care of the smoothing. The features are:

• the first three words on the stack and the buffer (and their POS tags) (12 features)

• the words, POS tags, and arc labels of the first and second leftmost and rightmost
children of the first two words on the stack, (24 features)

• the words, POS tags, and arc labels of leftmost child of the leftmost child and rightmost
child of rightmost child of the first two words of the stack (12 features)

Collobert et al (2011) pretrained word embeddings were used; the rest were learned. A
n3 activation function is used (quite unusual nowadays but Chen was writing her code all
by hand). The parser scored 90.7 LAS and 92.0 UAS on converted treebank, a SOTA for
the time. It was also much faster than other parsers; this was in large part due to a lot of
precomputation of values. The latest (2019) using BERT/XLNet is around 95.7 LAS and
97.2 UAS.
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16.4.2 Chiu-Liu-Edmonds

Shift-reduce parsers have a major flaw; they can’t handle non-projective trees. For English
this isn’t a problem; over 99.4% of the English (and 100% of the Chinese) Treebank is
projective. But for Czech this would be a problem. Another algorithm, called Chiu-Liu-
Edmonds, after its simultaneous creators, can be used instead. It’s a fairly elegant algorithm
but unless there’s great demand I’ll leave it to you to research (e.g. https://www.cs.

cmu.edu/~sswayamd/talks/cle.pdf, https://user.phil.hhu.de/~waszczuk/teaching/
depparse-su18/exercises/session_5/example.pdf
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Chapter 17

Semantics

17.1 Semantics

This is potentially a huge topic – note that it takes up three chapters of Eisenstein. Semantics
is the study of how to understand the meaning behind language. The question of what
meaning even is gets a bit philosophical and this is part of why the topic is potentially
large. We can think of semantics, or rather semantic analysis (per Eisenstein’s description)
as converting natural language into a meaning representation that connects to knowledge
about the world. Further, each thing that is known should have a single representation such
that if the representation changes, the meaning changes.

We’re going to focus on some key parts of meaning. So to begin with, here’s what we’re
not going to talk about:

• Logical semantics – the interpretation of natural language as a set of logical formulas
including negation, conjunction, disjunction, implication, associativity, etc. You can
read more about this in chapter 12 of Eisenstein.

• Semantic roles and predicate argument structure that are covered in 13.1 and 13.2, as
well as abstract meaning representation, which uses some of these (see 13.3); I meant
to talk about these but I will defer for now due to time.

Most of the focus will be on lexical semantics, first traditional and then distributional.
By lexical semantics we mean the meaning of words.

17.2 Semantic Similarity

To begin with, instead of analyzing each word in myriad dimensions of potential meaning,
let’s simply discuss the relative relationship of words to each other. If two words are inter-
changeable we can say they are ‘synonyms.’ Why is it useful to determine these? Consider
a question answering task. We want to answer this:

What is a good way to remove wine stains?
We can use a few rules and search a big corpus for sentences starting ‘A good way to

remove wine stains is.’ But we can do better. We’d like to match any of these as well:
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Salt is a great way to eliminate wine stains
How to get rid of wine stains
How to get red wine out of clothes
Oxalic acid is infallible in removing iron-rust and ink stains
Knowing that ‘remove’ is synonymous or at least similar to ‘eliminate’, ‘get rid of’, ‘get

out of’, ‘removing’ and that ‘good’ is similar to ‘great’ would help in approximate matching.
You could use this to find movie recommendations; find movie scripts with similar words

(or phrases, sentences, paragraphs) to scripts of movies you like.
We’re pretty good at doing this. You probably don’t need to be told which of these pairs

are similar and which are not similar:
bank-money doctor-beer
apple-fruit painting-January
tree-forest money-river
bank-river apple-penguin
pen-paper nurse-fruit
run-walk pen-river
mistake-error clown-tramway
car-wheel car-algebra

It turns out humans ranking similarity on a scale from 0 to 4 do so with correlation of
0.9! that’s pretty good!

What makes words similar?

• Meaning: (wait isn’t all semantics meaning?) e.g. ‘want’ vs ‘desire’

• World knowledge: things go together (pen-ink, dog-cat)

• psychology: we think of the concepts together (death-taxes)

17.2.1 Brief bit on linguistic terms

These definitions are sometimes helpful. You are probably familiar with some if not all of
them from grade school.

• homonym: two words with same form but unrelated, distinct meanings.

– homograph: bank (finance) vs bank (slope); bat (wood stick) vs bat (animal)

– homophone: write vs right, piece vs peace

• polysemy: having more than one related meaning. bank (financial institution vs phys-
ical building)

• metonymy: one thing standing in for another (‘I love Jane Austen’(’s writing)), which
can lead to introduction of senses e.g. ‘school’ to mean the two bank senses

• synonym: two words with same meaning

• antonym: two words with opposite meaning
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17.2.2 Evaluation

Some ways to evaluate:

• Given a word and a choice of other words, find the one that is closest in meaning.

– accidental: wheedle, ferment, inadvertent, abominate

– imprison: incarcerate, writhe, meander, inhibit

– WS353: a dataset of similarity scores for 353 English word pairs. Can be used to
automatically create these tests.

• Malapropism test: find the word in the sentence that is most likely wrong

– Jack withdrew money from the ATM next to the band.

– Can be created by randomly replacing words from a lexicon

17.2.3 Hand-Built Resources

We cared about annotating semantic relationships between words, so much so that consid-
erable effort was put into hand-crafting ontologies. For lexical semantics, the most famous
(other than roget’s thesaurus) was WordNet. It has 118k English nouns, 11.5k verbs, 22.5k
adjectives, 5k adverbs.

Lemmas (base word forms) have one or more senses (distinct meaning units), each with
examples explaining the distinct meaning. Meaning units are known as synsets. A synset
has a definition and often some examples. A lemma has multiple senses. Each sense has one
synset. But different senses of different words can share the same synset.

E.g. chump-1 has the synset defined as “a person who is gullible and easy to take
advantage of”. This synset is shared by fool-2, gull-1, mark-9, patsy-1, fall guy-1, sucker-1,
soft touch-1, mug-2.

Senses are structured in hypernym trees; a hypernym is more inclusive, a hyponym less
inclusive. car is a hyponym of vehicle. Alternately this is an ‘is-a’ hierarchy (car is a vehicle).
Alternately it’s an entailment hierarchy (being a car entails being a vehicle)

Wordnet also encodes meronymy (but less so); this is a part-whole relation; leg is a
meronym of chair. Alternately, chair is a holonym of leg.

There are verb relations too but they’re more incomplete.
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Wordnet is incomplete and inconsistent; some parts are very dense, others have gaping
holes. It is also increasingly out-of-date (e.g. television has meronym kinescope—these
haven’t been part of televisions for years!). Nevertheless it can be a very precise (subject to
datedness) repository of info and can be used to determine word similarity with some quite
simple algorithms over synset trees.

E.g. Path length == number of arcs you walk to get between words. A simple normalized
refinement is simpath = 1/pathlen. It’s a number from 0 to 1 and the closer words are, the
higher the value is.

17.2.4 Distributional Methods

A totally different way to understand word similarity is based on a famous quote by linguist
John Rupert Firth (1957): “You shall know a word by the company it keeps.” That is,
words are similar if the words they are near are similar.

Intuition from Zelig Harris (another linguist) in 1954: “oculist and eye-doctor occur in
almost the same environments...thus we say they are synonyms.”

Here’s another example:

A bottle of tesgüino is on the table
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Everybody likes tesgüino

Tesgüino makes you drunk

We make tesgüino out of corn.

What do you think tesgüino is?

17.2.5 Word co-occurrence matrices and mutual information

Let’s try this first comparing documents and words:

Notice the usage patterns of ‘fool’ and ‘clown’ vs ‘battle’ and ‘soldier.’ Notice also the
similarity of some of the plays.

Important difference from thesaurus-based approaches now; we’re losing the ability to
distinguish between senses of the same word form (there are ways to try to get these back
but won’t cover them here and the ‘hard decision’ approach doesn’t work that well...but we
will revisit this when we discuss contextualized representations).

We can also make such a table for smaller contexts, such as a four-word window.

aardvark computer data pinch result sugar
apricot 0 0 0 1 0 1
pineapple 0 0 0 1 0 1
digital 0 2 1 0 1 0
information 0 1 6 0 4 0

In this table the number of times a word in the column was seen within four words of
the word in the row is listed in the cell.

In reality this table is |V | × |V | but the vast majority of cells are 0 (very sparse). Notice
again how similar words have similar vector patterns.

This is so because of two co-occurrence phenomena:

• Syntagmatic (first-order) association (surface similarity): sets of words all occur near
each other, somewhat interchangeably. E.g. ‘wrote’, ‘book’, and ‘poem’ all tend to
occur near each other so they are likely to have similar patterns (example: “Whether
a book or a poem, what Jane Austen wrote will live for generations.”).

• Paradigmatic (second-order) association (paradigm similarity): words don’t necessar-
ily occur near each other but nevertheless do have similar neighbors. E.g. ‘wrote’,
‘said’, ‘remarked’ all share a ‘paradigm’ of words they occur near. (example: “The
candidate remarked that the troops were important.” “The candidate said he valued
the importance of the troops.” “The candidate said the troops mattered a lot to him.”)

It has been observed that a narrow co-occurrence window (1-3) will tend to give words
with similar syntactic properties more similar vectors and with a wider window (4-10) more
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semantic and not necessarily syntactic similarity. Think ‘orange/apple/lemon/carrot’ for
the former and ‘kill/death/killing/killed’ for the latter. These are not hard and fast rules.

Not all co-occurring words are equally informative! Consider ‘the’ and ‘of’ which occur
many times very frequently with other words. It’s better to ask which words are particularly
informative. Specifically, if words occur more frequently than they do by chance, this is
interesting to us1. We specifically define pointwise mutual information for words w1, w2:

MI(w1, w2) = log2

P (w1, w2)

P (w1)P (w2)
(17.1)

If w1 and w2 are IID, we’d expect P (w1, w2) = P (w1)P (w2). If this is so, then MI = 0. If
the words co-occur more likely than expected, i.e. P (w1, w2) > P (w1)P (w2), then MI > 0.
If they occur less frequently MI < 0. This last element is often ignored; we don’t really
know what it means to be some degree of ‘unrelated’ plus the resolution needed to detect
events less likely than the product of two events necessitates very large corpora. Typically
we instead study positive pointwise mutual information:

‘

PPMI(w1, w2) = max(log2

P (w1, w2)

P (w1)P (w2)
, 0)

Here’s a worked example. Using the table above of frequency counts fij for word i in con-
text of word j, we can calculate joint probability, word probability, and context probability,
as:

pjoint(i, j) =
fij∑

w

∑
c fwc

pword(i) =

∑
c fic∑

w

∑
c fwc

pcontext(j) =

∑
w fwj∑

w

∑
c fwc

p(w, c) p(w)
computer data pinch result sugar

apricot 0 0 .05 0 .05 .11
pineapple 0 0 .05 0 .05 .11
digital .11 .05 0 .05 .05 .21
information .05 .32 0 .21 0 .58

p(c) .16 .37 .11 .26 .11
PMI(information, data) = log .32

.37×.58
= .57

Here are all PMIs:
computer data pinch result sugar

apricot 0 0 2.25 0 2.25
pineapple 0 0 2.25 0 2.25
digital 1.66 -.56 0 -.07 0
information -.8 .57 0 .47 0

1see also TF*IDF, another way to formulate the same idea
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To get PPMI, replace the negative values with 0. The unfilled boxes are also

17.2.6 Cosine similarity

A nice number for characterizing the closeness of two vectors is the cosine of these vectors.
Each word is represented as a vector in |V |-space. If the angle they make is small, the cosine
is close to 1. Cosine is just a normalized dot-product. Simple dot product isn’t a great way
to calculate closeness, because longer vectors (i.e. with high values in some dimensions) will
lead to larger dot product. Cosine normalizes this:

cos(a, b) =
a · b
|a||b|

where

|x| =
√∑

i

x2
i

17.2.7 Neural(-inspired) distributional representations

An issue with PPMI is the vectors are very sparse and the dimensions very large. We
previously saw embeddings were lower-dimensional dense representations of words. We want
embeddings for words to be aware of the contexts in which these words occur. One way to
do this is inspired by feed-forward neural networks. Mikolov’s skip-gram is like a miniature
version of the FFNNLM. It contains a word embedding matrix E and an output matrix O
but no hidden matrix and no nonlinear function. Given a word w and its context word c, the
logit for c is simply (EwO)c. Given some text, training data is formed by taking c to be any
word within some range r before or after w. An alternative framework called the continuous
bag-of-words sums together the embeddings of context words within r of w to predict it. In
other words, for r = 2, the logit for w is ((Ew−2 + Ew−1 + Ew+1 + Ew+2)O)w.

.
These models, along with some techniques for training them very quickly, are known

collectively as Word2Vec (w2v). Some nice properties observed with them is that one could
do vector math; the vector formed by subtracting big-biggest is very similar to that formed
from small -smallest. To this end, the W2v authors created an analogy test set. To evaluate
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vectors, you consider an analogy like “brother:sister::grandson:granddaughter.” You calcu-
late grandson+(sister -brother). If the closest embedding to that vector is granddaughter the
relationship has been captured. The relationship types are shown below, as are some results.

It turns out the product of the w2v embeddings can be shown to be closely related to a
PMI table.

123



Chapter 18

Information Extraction

18.1 Origins

(A lot of this comes from [10]. A lot also comes from Heng Ji’s (UIUC) IE class slides.)
By 1994 the US government was already familiar with information retrieval: search a

corpus of documents and retrieve those documents that match your search terms – now
you don’t have to read so many documents! But documents can be long; how about we
search for just the facts we want instead? Originally there were templates of all the info
the gov’t wanted to find (e.g. locations and actions of ships scraped from navy telegraph
cables). This was tested in a series of evaluations (this is how evaluations to drive NLP
research got going!). Originally you had to participate in the entire pipeline of various kinds
of information retrieval but then (1995) they split into independent and more generic tasks
to encourage more participation by smaller teams. One of the tasks that year was ‘named
entity recognition.’ This eventually led to the ‘Automatic Content Extraction’ program
(ACE) which focused on even more fine-grained, independent tasks. The corpora produced
in 2005 by ACE are still heavily used, nearly 15 years later.

18.2 Why

Why do we want to have a big knowledge graph at all? Ultimately, don’t we just want to
interact via natural language?

Yes, a really good version of e.g. Siri is an end goal. But even the super-awesome GPT-3
is not all that great at question answering. A fact repository, i.e. a knowledge graph, is
fundamental to that kind of bot.

Consider also investigative journalism. In 2020, BuzzFeed got access to a lot of ‘FinCEN’
financial irregularity disclosures1 which were a lot of financial transaction data but also
narratives by bankers detailing the irregularities. The team actually tried to use IE but
couldn’t so they read everything by hand and compiled networks showing who was involved
in what2. It’s not feasible to read in a database of reports and then write a news article;

1https://www.buzzfeednews.com/fincen-files
2https://www.datanami.com/2020/09/25/icij-turns-to-big-data-tech-to-unravel-fincen-files/
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that’s not likely in the current visible AI horizon. But it is feasible to be able to build an
information network

18.3 Tasks

Here I’ll mostly outline the individual tasks that we see today that are called IE and try
to get into their details a bit. The figures show the types that were used in ACE and are
still widely used today, though there are additions/exceptions. The ultimate output of IE
can be thought of as a knowledge graph, that is, a representation of every conceivable piece
of information and how it relates to every other conceivable piece of information, a snippet
of which is shown below. With such a graph information queries would be more straight
forward to look up. However in practice it is far more common to work on one aspect of
constructing this graph at a time.

18.3.1 Named Entities
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The general idea here is to find all the things that have proper names. Names are not
really part of the ‘core’ language so it makes sense to excerpt them. If we’ve POS-tagged
then already we have an idea of what are names; they have NNP tags usually (not always).
In general we’d also like all kinds of ‘language external’ elements like addresses, times of day,
etc. and subsequent evaluations/definitions/systems have added more types.

But we don’t always just find the names. Sometimes we find the nominal references
too (i.e. references to named things without using the names) as well as the pronominal
references (references using a pronoun). Often these are evaluated separately; names are
easier to detect and type than nominals, which are easier than pronominals.

In other circumstances we may want to find special purpose entities. One particular type
of interest is chemicals, proteins, enzymes, etc. These are often identified in various kinds of
medical literature.

Detection

The detection task is: given a text, find the spans of the entities. What constitutes a ‘span’
can be trickier to define than you might think. Consider:

The Los Angeles Times, a fine newspaper, arrives in my town on Saturdays,

but it is usually late, because Culver City has a traffic problem and

God hates me.

Some questions that have to be answered (typically consult your annotation guidelines;
I provide my best guess):

• Is ‘Los Angeles Times’ marked? It’s the paper, not the organization, I think... (yes)
What about ‘newspaper’? Still an org? (yes?) What about ‘it’?

• Is the ‘The’ included? (yes)

• Is ‘Los Angeles’ the GPE marked? (No)

• Is the ‘City’ in ‘Culver City’ marked? (Yes)

• Do we count tokens or characters? (I think tokens)

• If tokens, is the comma marked? Or the period in ‘me.’? (no; there is a ‘standard’
tokenization)

• Is God a person? (No)

What makes matters worse is, despite annotation guidelines, people don’t necessarily read
them, and might evaluate/tokenize differently, then report results that are not replicable.
It can be a big mess! Assuming you can agree on those standards, Micro-F1 on exact span
match is typically what is reported.

The best way to learn this data is as a tagging problem, but with tags like PER, ORG,

GPE, LOC, FAC instead of NN, JJ, ADV, etc. And since the elements we are learning are
multi-token, we use what is known as BIO notation; the beginning of an entity is tagged
with B, and other tags of that entity are tagged with I. Words not in an entity are marked
with O. Thus:
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B-ORG I-ORG I-ORG I-ORG O B-GPE I-GPE O O O

The Los Angeles Times in El Segundo is great .

Another variant is BIOSE which distinguishes between Beginning, Inside, End, and Solo
entities. Either can be learned with an HMM or LR/MaxEng tagger, just like a POS tagger.
Even better is a CRF which considers the entire sequence to be an item that is predicted;
for tag sequence T = t1, . . . tn and word sequence W = w1, . . . , wn :

PHMM(T,W ) = ΠiP (wi|ti)P (ti|ti−1)

PMEMM(T |W ) = Πi
exp(θ · f(ti, ti−1, wi))∑
t exp(θ · f(t, ti−1, wi))

PCRF (T |W ) =
Πi exp(θ · f(ti, ti−1, wi))∑
T ′ Πi exp(θ · f(t′i, t

′
i−1, wi))

In the vanilla HMM we are just using word, tag and tag, tag co-occurrence, but in
MEMM and CRF we can define various features. Naturally, those features could themselves
be the outputs of a neural network, saving us the trouble of having to come up with features
ourselves. A pretty good model [14] (90.94 on CoNLL 2003; SOTA as of 3/14/19 is 93.5 [3])
is the bidirectional LSTM ; here’s a figure from the paper:

They also use character embeddings; same idea. Note that these results are not hugely
better than CRFs with hand-defined features, but no features needed to be defined. This
works well across a variety of languages.

18.3.2 Coreference

Coreference is the task of clustering entity mentions that all refer to the same entity. This
is particularly important when considering nominal and pronominal mentions but also when
considering entities that might be named different ways (Los Angeles Times, The Los Angeles
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Times, The Times, LA Times) or ambiguous people names (President Clinton, Secretary
Clinton, Senator Clinton, Clinton). Here’s an example from a recent survey paper [19] that
illustrates how difficult this is:

The Queen Mother asked Queen Elizabeth II to transform her sister,

Princess Margaret, into a viable princess by summoning a renowned

speech therapist, Nancy Logue, to treat her speech impediment.

• How many people are described in the above sentence?

• Label all person mentions (name, nominal, pronoun) and indicate coreference

Features we are using as humans to get coreference right:

• gender match (Queen, her)

• number match (The team, The Yankees, they)

• entity type match (Joe Smith loves New York. The city this father of three grew up
in...)

• metonymy – tricky! (The Yankees returned to their city winners. New York had lost
the first two games...)

But the May 2 clash between separatists and Ukrainian government supporters

in Odessa that took nearly 50 lives,... That battle was portrayed by

Kremlin-controlled Russian media as evidence that the Kiev government is

bent on recovering the occupied areas even if it has to shoot innocent

bystanders to do so.

Is ‘government’ referring to the same government?
Pronouns in particular are not easily resolved with surface features; this has led to the
‘Winograd challenge‘ exemplified as follows:

• The city council refused to give the demonstrators a permit because they feared vio-
lence.

• The city council refused to give the demonstrators a permit because they advocated
violence.

• When Sue went to Nadia’s home for dinner, she served sukiyaki au gratin.

• When Sue went to Nadia’s home for dinner, she ate sukiyaki au gratin.

• Others, like agricultural entrepreneur Yevgeny Kremnyev of militant-occupied Svyate-
gorsk, voted for independence with the understanding that their autonomous republic
will remain part of Ukraine but with more control over its foreign and economic poli-
cies. He said he intended to cast a ballot in the May 25 national presidential election,
although he sees no candidate to his liking .
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Figure 18.1: Coref Results

I think even the best models are still not using all of the context available to humans
(and not even all the context made available). It becomes a computationally explosive task
and in a sense the search (attention?) through the information is not done in a principled
way, yet.

18.3.3 Evaluation

While scores are calculated as F1, evaluating this properly is quite tricky since one has to
consider how to deal with ‘polluted’ clusters, multiple clusters of the same entity, and absent
clusters. Traditionally an average of 3 different F1 scores is taken.3

There are a variety of techniques for doing entity coreference. The top performer de-
scribed in [1] [16] is built as a classifier on top of a bidirectional LSTM (fine tuned from
ELMo); for each mention, a distribution over all possible antecedents is predicted. In gen-
eral n2 comparisons must be made!

Per [1] top Coreference scores on the Ontonotes data set (from 2007) are in the mid .70s
to mid .80s for name mentions, depending on the type. .58 to .77 for nominals and .26 to
.51 for pronominals. This is still very much an unsolved problem. It is also important to
distinguish between coreference given perfect mentions and end-to-end coreference (i.e. after
mention identification). See 18.1.

Grounding/Linking

Having formed a cluster of entity mentions, one may also link them to a pre-existing knowl-
edge base and thus ground them to some already existing facts. A typical general purpose

3See [1] if interested.
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knowledge base is Wikipedia; this is sometimes then known as wikification. Other than
wikipedia, there are special-purpose KBs. One well-known one is ‘GeoNames’ which is a
listing of 11 million placenames. Another is Chemanalyser, which has many chemical com-
pounds, substances and compound classes. Freebase and YAGO are other all-purpose KBs.

Grounding is not at all trivial; consider Chicago, which can refer to a city, a band, a
typeface, or one of many professional sports teams. In addition to grounding to the KB,
there will generally be some entities that aren’t in the KB; these should be properly identified
as NIL.

Note that it is possible to simply link without clustering first and if done properly all
non-NIL links will also implicitly be proper clusters; this can often be easier than simply
determining coreference. However, it is still necessary for NIL mentions.

As with coreference linking can be done with perfect mentions or end-to-end; SOTA is 86.6
micro end-to-end [13] and 94.9 with perfect mentions [26]; determining the methodologies is
an exercise left to the reader.

Make It Harder

Some more challenging extensions on the basic entity identification task:

• Few-Shot: given 20 examples of a new type, how well can you recognize it?

• Cross-Lingual (often termed ‘zero-shot’): given training data in one language (typically
English), how well can you do in another language where no training data is given?

• Cross-Domain: Turns out the way entities are mentioned and co-referred varies across
domains (e.g. news text, conversation, web text)

• Fine-Grained: instead of 6–10 types, how about hundreds of types, e.g. basketball-player.
Then the same span can have many different labels (think of them as properties)

• ultra-fine grained: extract thousands from large ontology (e.g. YAGO): predict location
a mention should be in an ontology graph

18.3.4 Entity-Entity Relations (Relation Extraction)
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Relations are ways entities are related. Typically relations are between exactly two
entities and the order matters The table above lists relations from ACE (there are subtypes
not listed); a SemEval task in 2010 [11] defines other relational types. There are special-
purpose relation types too, e.g. in medical literature we often want to know about relations
like ‘bonds’ or ‘phosphorylates.’

Basic Methods

Early methods that can work reasonably well are so-called “Hearst Patterns”:

1. Come up with some basic patterns, such as [PERSON], born in [LOCATION] for the
“Born in” relation (think of some for “agent-artifact“, “part-whole.”

2. Extract a lot of entity pairs from a large corpus (e.g. “Einstein, born in Germany”)

3. Find these entity pairs elsewhere in the text (e.g. “Einstein, who began life in Ger-
many“)

4. Learn new patterns from these spans ([PERSON], who began life in [LOCATION])

5. Repeat!

Usually we want training data to do some form of supervised learning. The above method
is a way of obtaining training data ‘automatically.’ Another general method is “Distant
Supervision:”

1. Obtain a partial list of relations (e.g. from wikipedia)

2. Find sentences that contain the entities in the relation pair and label them.

3. (self-training extension) Build a model with the data, use it to label more data, build
another model (this can get noisy and degrade quickly, though).

Prior NLP analysis, such as Entity mentions, coref, dependency parses, POS tags, and
semantic relatedness are all good features that can be used to model this analysis task.

Outside Information

A major difficulty with relation identification (and IE in general) is that humans intuit
information based on a lot of background or even common-sense knowledge, which is hard
to convey to machines. Having access to background information makes the task a lot easier
for machines. Here is a (made up) example:

David Cone was seen at the premiere of the new Star Trek movie last night.

The former Royal and Yankee color commentator said science fiction was one of

his biggest passions, along with his family and baseball.

There is a works-for relationship between David Cone and Kansas City Royals. There
are many inference steps needed to make this connection. However, it’s relatively easy to
find the wikipedia page for Cone, and then to find links for the Royals (and the Yankees)
and this information makes it easier to elicit the relationship.

Some more examples of how it’s complicated to determine relations can be found in
Figure 18.2.
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Figure 18.2: Example of complicated reasoning needed for learning relations

NN Methods

Grishman [10] reports that CNNs operating a fixed window covering gaps between entities are
reasonable for relation detection. A graph convolution network over dependency structure
may also do well (use the dependency links as adjacency instead of/in addition to the natural
word adjacency.) BiLSTM classification has also been shown to work well. There are a
variety of different kinds of test sets and top F1 performance seems to be in the mid-80s.

It can be really tough though! Figure 18.3 has some tough (for machine) examples.

Some reasons why it’s tough

Pronoun referent

18.3.5 Extensions

• Cross-Document relation extraction (what are the set of relations expressed by consid-
ering a whole corpus, rather than a single document? Show supporting evidence)

• Cross-Lingual/Cross-Modality (Now the documents are in Chinese, Spanish, English,
there are movies as well as text files...)

• Fine-grained relations (as with fine-grained entity types)

• Relation and Entity at the same time – maybe the decisions shouldn’t be pipelined
but a joint decision should be made (can be done as semantic parse, can be done as
multi-task model).
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Figure 18.3: Tough Entity Relations

18.3.6 Open IE

You need not have an ontology of relations, or even entity types for that matter, but could
conceivably identify all relations of any kind between all entities in the world. An example
from Stanford’s webpage on open IE: the sentence “Barack Obama was born in Hawaii”
would create a triple (Barack Obama; was born in; Hawaii),

In a survey on the matter [20] it is pointed out that a prime difficulty here is evaluation;
data sets vary considerably and have very different properties, The goal of open IE is to
scale to very large volumes of text but this makes preparing reference data difficult. Most
evaluation sets remain in Wikipedia and News domains, even though another point was to
be able to extract in heterogeneous domains. There is still a lot of research to be done
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18.3.7 Events

Events are specific things that happen, involving participants, causing a change in state.
There are various ways to define what constitutes an event, but in ACE there is typically
a trigger, i.e. the word in a sentence that connotes the event, and zero or more arguments,
that is, labeled spans of entities involved in the event. In an example from Eisenstein:

Elected mayor of Atlanta in 1973, Maynard Jackson was the first African

American to serve as mayor of a major southern city.

The event is an election, with roles office:mayor, district:atlanta, date:1973, and person-
elected:Maynard Jackson.

Events in most data sets are discovered in the context of a single sentence. Multiple
events can appear in one sentence, and the same span can serve as more than one argument
in multiple events. For example:

John shot Mark for killing his brother Dan.

there is a shot event with agent:John and patient:Mark, as well as a killing event with
agent:Mark and patient:Dan.

Various classifiers have been used to first detect and label triggers, then for each trigger
detect and label spans. Trigger classification is in the 80s or so, and argument classification
in the 50s-60s. Here is a figure and table of results from a paper at ACL in 2019:
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Events face a number of challenges. IAA is quite low on them in general. The largest
data sets have fewer than 40k events annotated. Multilingual events fare even worse; ACE
2005 has Arabic and Chinese annotation as well but the amount is lower and the quality
even worse.

How it’s done

Methods are fairly similar to entity detection (neural CRf, lots of features, people trying
BERT and its ilk). As with entities, syntactic and semantic features seem to help so pipelines
are used which enable e.g. GCNs. Lexicons and external knowledge sources are also used.

Ontology

There are several. REO (rich event ontology) ACE (automatic content extraction) are popu-
lar. Could also consider the frames of FrameNet and verbs of VerbNet. The types are in the
hundreds. Each event type has a set of valid arguments though most have an agent (often
referred to as ‘arg0’) and patient (often referred to as ‘arg1’).
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Evaluation

As with Entities, F-measure is used. However multiple steps are needed to ‘find’ an event
and a portion of these could be considered ‘gold’, could be ignored, or could be included in
the calculation:

• Find the trigger word or span

• Label the trigger

• Find the argument word or span (done multiple times)

• Label the argument (done for each found argument)

Often you will see argument and trigger statistics where the arguments are extracted
given gold triggers. It’s important to read carefully!

18.3.8 Event-Event Relations

One can discuss relations between events as well. These are typically temporal or causal
relations though there are also subpart relations and some others. Temporal seem to have
been studied the most; the Timebank corpus [23] was constructed and annotated to try to
capture temporally related events. An example is below:

How might events be temporally related?

• A started and finished before B

• A and B partially overlap

• A starts before and ends after B

• A and B completely coincide

However most of the time the start and/or end of an event is unspecified, unknown, or
unknowable from text.
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Events can also be structured relative to other events, e.g. an election is an event that
involves, among other subevents, several debates.

Newer work [21] shows a variety of ways of looking at evaluation (there are again numerous
data sets so timebank itself is not necessarily being used always); in general determining
the order of events, whether they overlap or have containment relationships, etc. is not
particularly agreed upon by annotators and thus it is difficult to build consensus in corpora
let alone build satisfactory systems. Causality can be even worse.

18.3.9 Non-Events

A tricky bit about events is that while we use language to describe things that did or do
happen, we also use it to describe events that are not so concrete:

• Events that did not happen (‘The Dodgers failed to capture a World Series Title last
night’) – this example includes an event that didn’t happen as well as a negative event
(the failure) that did!

• Events that might happen (‘If inflation rises too fast the economy could collapse, say
experts.’)

• Non-specific events that may have happened (‘Whenever there is a fire, crew 147 is on
the scene to put it out.’)

• Hedged events (‘These results suggest that the D gene might be involved in granulocyte
differentiation’)

In most event recognition work the task is to avoid recognizing these events and to
only focus on actual events that occurred. To the degree that these not-quite-event cases are
pursued, there is the FactBank (Sauri and Pustejovsky, 2009) which annotated 77,000 tokens
and 9500 events on 208 documents for how factual the events are (factual, non-factual) and
how certain the claim is (certain, probable, possible). They claim IAA of 0.81! I haven’t
seen a lot of recent work trying to solve this as a task.

18.3.10 Scripts/Schema Induction

A theory due to Roger Schank is the idea that all events comprise sequences of more funda-
mental events. These sequences are known as ‘scripts.’ The classic example is ‘eating at a
restaurant’:

1. Enter = walk in, look at tables, figure out where to sit, sit.

2. Order = acquire menu, choose food, get waiter attention, provide order, waiter provides
order to cook

3. Eat = cook gives food to waiter, waiter gives food to you, you put food in mouth, chew
swallow
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4. Exit = waiter gives check, you pay, waiter gives receipt, you stand up, you walk out.

A recent DARPA program is concerned with discovering these scripts (also known as
schemas). It is quite difficult to find text evidence for these components despite having
enormous corpora. Some of the more helpful data sets are instructional corpora such as
WikiHow but even then there are many holes in knowledge.

There is prior empirical work in working with schemas. Chambers and Jurafsky extract
chains of events from documents where the events have a common argument (a ‘main char-
acter’). From these chains then a Cloze test can be proposed, where one event is hidden and
the goal is to determine what it is. This could be useful for narrative generation. There has
been a little recent follow up work but the task still needs more definition and the quality
of results indicate we’re still at the beginning of this complicated analysis.
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Chapter 19

BERTology, or Blade Runner NLP

19.1 A Wide Variety of Semantic Tasks

• 1998: SENSEVAL: Word sense disambiguation shared task, coming out of the emer-
gence of corpus-driven approaches. Good for semantics too!

• Blossomed into now annual multi-task workshop, eventually renamed SemEval – lots
of word sense disambiguation tasks but then more and more generally ‘semantic’ tasks

• Shared tasks are a great way to establish baselines, gather data, drive interest in a new
area

• I ran a couple of tasks in Abstract Meaning Representation parsing and generation,
then co-chaired SemEval for two years; task approval is competitive, but then partici-
pation is not; good way to get into the NLP space!

Small sample of tasks

• WSD (Bass = fish, instrument, singer?). Variants in other languages, cross-language.

• Semantic Labeling (see connection to event recognition): Who is the agent and patient
in “John shot Mark”?

• Detection and Interpretation of Puns (Is there a pun or not and where is it in “I used
to be a banker but I lost interest”)

• Detection of Hate Speech/offensive language

• Some very special topics: “Extraction of Drug-Drug Interactions from Biomedical
Texts” (“Cytadren accelerates the metabolism of dexamethasone”)

• Math Question Answering (like on the GRE)
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19.2 Language Models are Good at Tasks

2018 (pub 2019): GLUE (see presentation) – suite of tasks. More or less designed for large
language models such as ElMo, BERT, RoBERTa.

• COLA: Corpus of Linguistic Acceptability. Is this sentence good English (binary)

• SST-2: Stanford Sentiment Treebank. Positive or negative?

• MRPC: The Microsoft Research Paraphrase Corpus. Do these two sentences have the
same meaning (binary)?

• QQP: The Quora Question Pairs. Do these two questions have the same meaning
(binary)?

• STS-B: The Semantic Textual Similarity Benchmark. How similar are these sentences
(5 point scale)

• MNLI: The Multi-Genre Natural Language Inference. Does premise entail hypothesis?
(3-way)

• QNLI: The Stanford Question Answering Dataset (reformulated). Does the given sen-
tence answer the given question?

• RTE: The Recognizing Textual Entailment. Entailment, 2-way.

• WNLI: The Winograd Schema Challenge (reformulated). Does the Winograd-posed
question match the resolution?

By 2020 overall and on four of the tasks, SOTA performance exceeded human levels.
2019 (pub 2020): SuperGLUE – supposed to be even harder.

• BoolQ: Boolean Questions: Short passage and yes/no question.

– Barq’s – Barq’s is an American soft drink. Its brand of root beer is notable for
having caffeine. Barq’s, created by Edward Barq and bottled since the turn of
the 20th century, is owned by the Barq family but bottled by the Coca-Cola
Company. It was known as Barq’s Famous Olde Tyme Root Beer until 2012

– is barq’s root beer a pepsi product? (No)

• CB: CommitmentBank: some statement in a passage; how much does the author
believe the statement?

– B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You
know, child, uh, care centers at the place of employment and things like that, that
will help out. A: Uh-huh. B: What do you think, do you think we are, setting a
trend?

– Hyp: They are setting a trend. (Entailment: Unknown)
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• COPA: Choice of Plausible Alternatives: determine the cause or effect of a premise
from two choices

– Premise: My body cast a shadow over the grass. Question: What’s the CAUSE
for this?

– Alternative 1: The sun was rising. Alternative 2: The grass was cut.

• MultiRC: Multi-Sentence Reading Comprehension: given a passage and some answers,
choose which are true (0+ may be true)

– Susan wanted to have a birthday party. She called all of her friends. She has five
friends. Her mom said that Susan can invite them all to the party. Her first friend
could not go to the party because she was sick. Her second friend was going out
of town. Her third friend was not so sure if her parents would let her. The fourth
friend said maybe. The fifth friend could go to the party for sure. Susan was a
little sad. On the day of the party, all five friends showed up. Each friend had a
present for Susan. Susan was happy and sent each friend a thank you card the
next week

– Question: Did Susan’s sick friend recover? Candidate answers: Yes, she recovered
(T), No (F), Yes (T), No, she didn’t recover (F), Yes, she was at Susan’s party
(T)

• ReCoRD: Reading Comprehension with Commonsense Reasoning Dataset: multiple-
choice Cloze test with entity masked out

– Puerto Rico on Sunday overwhelmingly voted for statehood. But Congress, the
only body that can approve new states, will ultimately decide whether the sta-
tus of the US commonwealth changes. Ninety-seven percent of the votes in the
nonbinding referendum favored statehood, an increase over the results of a 2012
referendum, official results from the State Electorcal Commission show. It was the
fifth such vote on statehood. “Today, we the people of Puerto Rico are sending
a strong and clear message to the US Congress ... and to the world ... claiming
our equal rights as American citizens,” Puerto Rico Gov. Ricardo Rossello said
in a news release.

– For one, they can truthfully say, “Don’t blame me, I didn’t vote for them,” when
discussing the <placeholder> presidency (US)

• RTE: Recognizing Textual Entailment; given 2 statements, does the first entail the
second (a, thus b)? Same as in GLUE.

– A: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer
at age 44, according to the Christopher Reeve Foundation.

– B: Christopher Reeve had an accident (No)

• WiC: Word-in-Context: Is this word used with the same sense in both sentences?

– Context 1: Room and board. Context 2: He nailed boards across the windows.
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– Sense Match? (No)

• WSC: Winograd Schema Challenge: which phrase does the pronoun refer to? (was in
GLUE in another form)

– : Mark told Pete many lies about himself, which Pete included in his book. He
should have been more truthful

– Is ‘he’ Pete? (No)

January 2020 (and latest as of October 2020): still not better than human overall, but
T5 is better on BoolQ, MultiRC, ReCoRD.

19.3 Designing Tasks that are Tough for Language Mod-

els

We’re continually trying to find tasks that humans can do well but that NLP models (par-
ticularly these large language models) aren’t able to do well. We’ve already seen that the
basic IE tasks and machine translation are still not at fully human quality, but yet we press
on with more tasks. Why?

• There are other aspects of language and cognition we’re trying to test. Analogues
to child psychology studies – at what age do children learn to create nouns? when
do they master casing, conjugation, etc? Psychologists make careful tests in order to
draw conclusions about human development that can’t be directly observed. Our NLP
“babies” similarly could be exposed to such tests. However we know that under typical
circumstances humans will grow to ‘master’ the various capabilities being tested. We’re
not yet at that point with NLP, seemingly, so we’re trying to find out what can be
learned.

• Making tests and data sets is fun and publishable, and so is doing better on those
tests. We’re all test-takers at heart, and we love to hill climb.

19.3.1 Cautionary Tale 1: ROC Stories

Researchers at the University of Rochester released an interesting corpus and task (Mostafazadeh
et al. 2016). They asked annotators to write simple five-line stories, each with beginning,
action, and ending. They asked other annotators to, when given the first four lines of the
story, write a ‘good’ and a ‘bad’ fifth line. Mechanical Turk was used, but many safeguards
were put in place.

• Had to judge five stories for quality or not (did they read the instructions carefully)

• Returned careful criticisms to workers

• Gave bonuses to top workers

142



Example:

• Line 1: Gina misplaced her phone at her grandparents.

• Line 2: It wasn’t in the living room.

• Line 3: She had been in the car before napping in the living room.

• Line 4: She grabbed her dad’s keys and ran outside.

• Possible Ending 1 (new author): But she didn’t want her phone anymore.

• Possible Ending 2 (new author): She found her phone in the car.

(I couldn’t find data that contained both the original line 5 and new author possible
endings; it could be this wasn’t released. As released, training data is just the original
stories and dev/test is just the four + possible endings and the sets don’t seem to overlap.)

This is a pretty useful and interesting data set! You need to use lots of discourse and
semantic analysis to figure out which of the endings is the right one. But the shape of the
task is very simple—it’s just binary classification! Also the data set is potentially useful for
training story generation systems. Because the stories are so simple, a lot of the complexity
is removed, leaving only the core plot and conflict issues. This might also be good for event
or event chain modeling!

However, a paper in 2017 (Schwartz et al, “The Effect of Different Writing Tasks on
Linguistic Style: A Case Study of the ROC Story Cloze Task”) found that with simple
non-neural linear classifier, the right vs. wrong could be predicted at 65%, original vs right
at 69% and original vs wrong at 76%...without seeing the context! This implies consistent
stylistic differences and thus the test is not testing what you might think it’s testing. In
competition the best system, which used contexts, identified right ending at 75.2% accuracy,
while a system without contexts still got 72.4%. Most differences do not seem intuitive!
New answers are shorter, wrong answers start with NNP, right answers contain ‘and.’ The
conclusion was that a great deal of care needs to be taken to test what you want to test.

19.3.2 Cautionary Tale 2: SWAG

Swag [35] is a nicely designed common sense test corpus. It presents a scene description and
four options for what can come next. Here are some examples:
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The general method is to find scene descriptions and examples of events that can come
next in captioned video and movie descriptions. A generative language model (think neural
MT where the input is in the same language) provided additional answers. Humans then
filtered these to avoid having a set of gibberish and to mark answers that happened to be
correct. The data as published had 85% (solo) / 88% (team) human performance but the
best model they could apply (ELMo) only scored 43.6%.

But then BERT came along. Although SWAG was published first, BERT’s arxiv paper
was well known before SWAG’s publication. BERT had 86.3% on SWAG! Did BERT learn
common sense?

SWAG was followed up by HellaSwag [34] (originally known as SWAG AF, for...adversarial
filtering). They analyzed why BERT did so well. They found that BERT was able to deter-
mine whether a sentence was generated, rather than whether it was sensible, and the nature
of the test design led to the correlation of this classification and performance. This was the
same test but had human performance of 95.6% and model (BERT) performance of < 50%,
plus worse on ELMo, GLoVe, FastText, etc. What changed?

• No movie descriptions

• Data from how-to documents (wikihow) added; these have longer contexts than other
data sets and appeared to be tougher in general for models to answer correctly.

• Candidate tests that were correctly classified by BERT were thrown out (!)

The paper points out that the adversarial filtering hurts all models, not just BERT, but
it does seem like the goal posts have been moved.
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19.3.3 More Tasks

There have been a lot of commonsense tasks proposed recently:

• MC-TACO (“Going on a vacation” takes longer than “Going for a walk”: A Study
of Temporal Commonsense Understanding – Ben Zhou, Daniel Khashabi, Qiang Ning
and Dan Roth, EMNLP 2019). Temporal Common Sense, dealing with events and
time. E.g. “Paragraph: Growing up on a farm near St. Paul, L. Mark Bailey didn’t
dream of becoming a judge. Question: How many years did it take for Mark to become
a judge? 63 Years, 7 weeks, 7 years, 7 seconds, 7 hours” (Correct answer is 7 years,
but I would say 63 years, and also that that could have been phrased better).

• PIQA: Physical Interaction: Question Answering (“PIQA: Reasoning about Physical
Commonsense in Natural Language” – Yonatan Bisk, Rowan Zellers, Ronan Le Bras,
Jianfeng Gao, Yejin Choi, AAAI 2020) asks questions or sets up tasks that require
understanding of the physical world. e.g. “Make an outdoor pillow” – either “Blow
into a tin can and tie with rubber band” or “Blow into a trash bag and tie with rubber
band”.

• VCR: Visual Commonsense Reasoning (“From Recognition to Cognition: Visual Com-
monsense Reasoning” – Rowan Zellers, Yonatan Bisk, Ali Farhadi, Yejin Choi, CVPR
2019). Given an image, identified entities (and bounding boxes/outlines), and a ques-
tion (e.g. “Why is [person4] pointing at [person1]?”) choose the answer from four
options. Seems to require deep understanding. Currently best system is at 81.6%
while human performance at 91%.

• NumerSense: Bill Yuchen Li’s work. (In 2020, Yuchen will tell us about it)

19.3.4 Discussion questions

• What is necessary and sufficient for a model to be said to have acquired some human
skill (semantic understanding, common sense, recognition of acceptable language)?

• Should models be ‘allowed’ to have access to more data than humans have?

• How do you know when a human has mastered some skill? Is it sufficient to test them?
To read an essay they wrote? To talk with them for a set amount of time?
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Chapter 20

Creative Generation
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Chapter 21

Dialogue
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Chapter 22

Power and Ethics

There are entire courses on ethics in AI and NLP. A list of them is here: https://aclweb.
org/aclwiki/Ethics_in_NLP. So this lecture will necessarily be incomplete. I’m also highly
influenced here by a talk Alvin Grissom II (Ursinus College) gave at WiNLP in Summer,
2019. Also see Fairness in ML tutorial https://mrtz.org/nips17/#/. And Tsvetkov/Black
course http://demo.clab.cs.cmu.edu/ethical_nlp/.

However, The Views In These Lecture Notes are Entirely My Own

22.1 Ethics

This covers a lot of ground, but consider some ways to argue:

• Utilitarianism – do whatever provides greatest good for greatest number of people
(where ‘good’ = knowledge/pleasure/health/aesthetics). This takes society into ac-
count but can lead to some pretty awful behaviors

• Egoism – everybody works in their own self-interest. though not everyone knows what
helps best or actively pursues it.

• So if you could choose what people see in a FB feed (using NLP), do you give them
what they say they want or what will lead to overall harmony in society?

• Deontological approaches – Consider certain actions themselves to be simply good or
bad. E.g. Laws of Robotics.

22.2 Bias/Discrimination

Shouldn’t we discriminate? That’s classification, right? That’s what we’ve been trying to
learn.

Counter argument: discrimination is appropriate when it is domain specific, not general.
When irrelevant or, more importantly, historically unjustified/systematically adverse results
have been used for discriminating, we can say, deontologically, we should stop using the
current approaches.
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22.2.1 Uncharged example: question answering with the wrong
signal

The work referenced is [9].

Hopefully you agree that the wrong info is being used to make the right choice. And
furthermore that this could very well lead to the wrong info being used to make the wrong
choice.

22.2.2 More charged: Race and gender bias in NLP

[5]: pretty much every kind of bias you can imagine was observed in glove embeddings.
Typical European-American names associated with pleasant words; black American names
associated with negative words. Typical names for woman associated with arts; those for
men associated with science.

Why is this a problem? For one thing, having stereotype biases, particularly strongly
weighted ones, in your models, can lead to your models predicting the wrong thing, even if
evidence beyond the bias counters the biased output.

Example: winograd test with bias potential [37]:
The physician hired the secretary because she was overwhelmed with clients.

Who is overwhelmed? If replaced by ‘he’ are the models better able to predict? (or re-
verse and use was highly recommended.) If the sentence is Jill, the physician, hired

Henry, the secretary because she ... you don’t need the end result to resolve the pro-
noun. Will the models resolve correctly? Default models evaluating on the ‘cross-bias’ set
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are on average 21.1 worse in F1. Data augmentation (swap stereotypical entities in training
data) mitigates...in that dimension. Gender is not binary, though binary gender dominates
data and discussion. And what about e.g. race – much more than binary and more balance
in this regard.

The counter argument is ‘people are biased, we’re just reflecting the data.’ Maybe we
should do something about this! Consider an article about a black man stabbed by a white
supremacist and how it ran in the New York Post:

Caughman, who has 11 prior arrests, walked for about a block after the
stabbing and staggered into the Midtown South Precinct, looking for help. He
died hours later after being rushed to a nearby hospital. Police sources said the
career criminal was refusing to talk to police about the incident and
acting combative before his death.

It doesn’t seem like this is necessarily limited to ‘known offenders.’ [4] argues that you
can’t really create something without some intentionality:

A former Apple employee...described his experience on a team that was develop-
ing speech recognition for Siri... As they worked on several English dialects, he
asaked his boss: “What about African American English?” To which his boss
responded: “Well, Apple products are for the premium market.”

22.2.3 Unintentional effects

COMPAS – a system for predicting probability of criminal reoffending. It was trained on a
balanced data set, and race was not an input feature. However, ZIP code was, ZIP is highly
correlated to race in the US, because of historical housing discrimination policies. Race is
also highly correlated to socioeconomic difficulty, for the same reasons.

Additionally, the data was set up to predict whether a person would commit a serious
crime. How was this judged? By who is likely to be convicted. Conviction rates are also
correlated strongly with race.

We can talk about algorithms to debias these results. But people have to want to use
them. If you’re trying to get a new SOTA on a GLUE task, and being biased helps because
the test set is biased, what is the right move?

22.3 Power, i.e. Energy

A recent paper [29] analyzed what we’re doing in order to make deep learning nlp models.
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The big problem is the experimentation it takes to get to the final models. You’re con-
stantly building and rebuilding, and the energy costs/CO2 put into the air are tremendous.

Here are breakdowns per model:

Maybe the energy’s clean? Depends where you live:

There is also the problem that only companies really have access/money to train the
truly big models.

What is the recommendation?
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• report training time and sensitivity to hyperparameters. give a better sense of true
cost

• government funded academic cloud compute: Academic researchers need equitable
access to computation resources.

• Researchers should prioritize computationally efficient hardware and algorithms. No
NAS!

22.4 Power, i.e. Control

22.4.1 Who funds your research?

In a University?

Then probably the federal government of the country you’re in, and often the military. E.g.
in the US the structure breaks down like this for CS:

• Company funding: 50-100k for 1 year. That funds part or most of a phd student, no
conferences. Hard to support a phd since it’s unstable funds. Gift, not constrained to
a project

• NSF: 150-175/year for 3 years. Phd student plus a month of time and some travel.
Decent way to support students. Fairly academically free but mission of the NSF is
considered. Also, very very competitive.

• DARPA/IARPA: Can be 1m/year or more for 4 years. Funds a lab. But Defense/In-
telligence have a specific task they want you to solve while you do research and you’re
tested on it frequently.

Unlimited rights of reuse are generally given to the funding agencies (esp. DARPA/IARPA).
So be careful what you develop!

• Under counter-intelligence programs in the 50s–70s, US government spied on, har-
rassed, and assassinated black and leftist activists

• FBI currently targeting ”black identity extremists”

• What would they do with advanced NLP?

• Consider treatment of MLK by FBI under Hoover

In a company?

What is the mission of your company? If it’s public, the mission only will ever be to
increase shareholder value. If it’s not, even then the ultimate goal will be to continue to
exist; there is a hybrid utilitarian/egoistic argument to justify this.

It’s hard to avoid being results-driven and the evidence shows that’s what continues to
happen:
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• face recognition false positives on white male faces way less than other combinations.
Do we expect this to be any different if detecting social media text and predicting
malfeasance?

22.4.2 How will your research be used to exert power over others?

• Predictive policing - starting in the 90s, data-driven approaches (‘Compstat’) were used
to use police more efficiently. However, this became more and more trusted by senior
administrators and police changed their behavior to force the system to constantly
show crime decreasing and more activity, by making increasingly meaningless arrests
and not reporting crime. Since system sowed crime going down and arrests going up,
things looked good.

• EMNLP Paper [7]. Extends work on predictive sentencing. Tries to predict the length
of a sentence given the facts of a case in natural language and the charges. The paper
argues accurate prediction rates, but what is the value of this paper if not to replace
judgements by humans? And what is the value of a judgement by a human if not to
find unique corner cases? An ethical statement is provided at the end of the paper
arguing the technology should be used for ‘review’ only but will this happen?

22.4.3 Codes of Ethics

From Hal Daume (2016).

IEEE:

1. to accept responsibility in making decisions consistent with the safety, health, and
welfare of the public, and to disclose promptly factors that might endanger the public
or the environment;

2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them
to affected parties when they do exist;

3. to be honest and realistic in stating claims or estimates based on available data;

4. to reject bribery in all its forms;

5. to improve the understanding of technology; its appropriate application, and potential
consequences;

6. to maintain and improve our technical competence and to undertake technological
tasks for others only if qualified by training or experience, or after full disclosure of
pertinent limitations;

7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct
errors, and to credit properly the contributions of others;
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8. to treat fairly all persons and to not engage in acts of discrimination based on race,
religion, gender, disability, age, national origin, sexual orientation, gender identity, or
gender expression;

9. to avoid injuring others, their property, reputation, or employment by false or malicious
action;

10. to assist colleagues and co-workers in their professional development and to support
them in following this code of ethics.

From Hal:

Responsibility to the Public:

1. Make research available to general public

2. Be honest and realistic in stating claims; ensure empirical bases and limitations are
communicated appropriately

3. Only accept work and make statements on topics which you believe have competence
to do

4. Contribute to society and human well-being, and minimize negative consequences of
computing systems

5. Make reasonable effort to prevent misinterpretation of results

6. Make decisions consistent with safety, health and welfare of public

7. Improve understanding of technology, its application and its potential consequences
(positive and negative)

Responsibility in Research:

1. Protect the personal identification of research subjects, and abide by informed consent

2. Conduct research honestly, avoiding plagiarism and fabrication of results

3. Cite prior work as appropriate

4. Preserve original data and documentation, and make available

5. Follow through on promises made in grant proposals and acknowledge support of spon-
sors

6. Avoid real or perceived COIs, disclose when they exist; reject bribery

7. Honor property rights, including copyrights and patents

8. Seek, accept and offer honest criticism of technical work; correct errors; provide ap-
propriate professional review
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Responsibility to Students, Colleagues, and other Researchers:

1. Recognize and property attribute contributions of students; promote student contri-
butions to research

2. No discrimination based on gender identity, gender expression, disability, marital sta-
tus, race/ethnicity, class, politics, religion, national origin, sexual orientation, age, etc.

3. Teach students ethical responsibilities

4. Avoid injuring others, their property, reputation or employment by false or malicious
action

5. Respect the privacy of others and honor confidentiality

6. Honor contracts, agreements and assigned responsibilities

Compliance with the code:

1. Uphold and promote the principles of this code

2. Treat violations of this code as inconsistent with membership in this organization

Deontological elements specific for NLP/linguistics

Support language variability and diversity
Recognize and model language as it is used
Respect the rights of humans to keep private language private
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Chapter 23

How to Write a Paper

Graham Neubig http://www.phontron.com/slides/neubig15paperwriting.pdf is the ba-
sis for this.

23.1 Major Points

• Your goals are to be read by your reader

• Think about your reader above all else. Put yourself in their shoes and make life easy
for them

• You have several readers: reviewer, adopter, future referent (20 year horizon)

• Do good work! Publish your accomplishments! But don’t carve them up into small
inconsequential pieces

• Read a lot of papers to get a sense of what works. Trust your instincts. The papers
you like, where you read through to the end and learn something new, are very likely
to be good papers. Copy their style!

You have been thinking about your problem for a very long time. Your reader has prob-
ably not been thinking about it and if they have they are surely using different terminology
from you and have probably come to a different perspective than you. So you need to hold
their hand:

1. Introduce the topic you are working on

2. Outline the basic problem and make a strong case for why it is a problem (there must
be some kind of problem, or else there would be no paper. It can be a flaw in the
way things are done today, a lack of prior careful analysis, or even a lack of compiled
works. But the case should be made for why the reader should keep reading, i.e. why
your paper should exist)

3. It is nearly certain that you are not the first person to work on this and that you are
borrowing ideas from others. Make sure to connect those dots. This is not necessarily
the same thing as a laundry list related work section (that comes later).
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4. If you’re going to get technical, use variables, use terms of art, etc. you need to create
a closed environment in which your variables and terms can live. Define variables and
functions at first use. Mechanisms that may not be obvious to everyone should be
referenced, and if you’re going to use the mechanism heavily you may need to briefly
explain the working parts that you will manipulate.

5. If you’re doing experiments, ensure reproducibility. You can do this by providing your
code and data, but that is not sufficient. Explain the details such that someone could
recreate the experiment from scratch. Note this is not the same as reproducing your
code from scratch. Low level details like which data structures you use, descriptions
of the code flow, whether the data is in xml or json format, etc. should not be in your
paper.

6. Show your results. Numerical results are likely to require a table and/or graph Make
sure your significant digits make sense; you probably don’t want more than one digit
after the decimal point. Consider the right way to present results. Graphs should have
the dependent variable (the variable you control) on the x-axis. Graphs should be line
graphs if there is a trend along the dimension of the x-axis that can be reasonably
inferred to hold in the points you don’t evaluate. But if the x axis is e.g. names of
different languages, a line graph doesn’t make sense; use a bar graph. The results
you present should tell a story that is intuitive before the details are inspected. The
details, if you present them, should enhance the story and give nuance. They should be
readable. If you’re trying to get the reader to compare two numbers or points, those
two numbers or points should be as close together as possible (this can be difficult
in 2-d graphics, so it is something of an art). Don’t expect any kind of comparison
to be made between separate graphs/tables. The captions should be sufficiently self-
contained to understand the basics of the story without the main text. The main text
should reference the results.

23.2 Understanding Related Work

There is nothing new under the sun. Your work is related to others’ work, and it’s important
to understand how it relates to that work and to let others know this as well. Why?

• Understand the history, allow others to build on your knowledge. Recognize the con-
tributions of others

• Ensure you’re not simply repeating old work and claiming it’s new (sometimes it’s ok
to repeat old work, but you should be aware you are doing so)

• (sigh) Vain people want to make sure you acknowledge their contributions.

But don’t just read! You may read too much and never get any work done on your own.
Or you may come to the conclusion that everything has been done before. This is rarely
true.

How to read?
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1. Find a relevant paper. You may already be aware of one (e.g. you’re trying to improve
upon someone else’s work directly). Or try searching for relevant terms in Google
scholar. Or ask your advisor (they know what search terms to use).

2. (Forward-looking) Find papers that have cited the relevant paper. Look for ones that
seem relevant. Also look for ones with fairly high citation counts. Google scholar,
arxiv, other resources have indexed this.

3. (Backward-looking) Find important papers this cited. Understand the context in which
it’s cited; it could be refuting, or it could be not actually relevant. Skim through
abstract to understand if you want to pursue. This is what bibliography is for! But
it’s also indexed by scholar, etc.

4. Repeat the process with forward/backward links.

5. Read through the papers that are most relevant, but understand the abstracts of others
(don’t read the whole thing)

23.3 Getting a Paper ‘In’

• Do good work! What’s good?

• Clarity: Is it easy to understand?

• Novelty: Is it new?

• Meaningful Comparison: Does it compare well with previous work?

• Reliability: Are equations and experiments correct?

• Impact: Will it make a big difference in the field?

• Replicability: Could others replicate the experiments?

• Overall Evaluation: What did you think? (what matters in the end)

23.4 Incremental work and ‘least publishable unit’

It might seem like a good idea to carve up your work as small as possible to get the most
papers you can. After all, hiring/tenure committees seem to count beans this way. But your
reputation will suffer; it’s easy to see who is doing this. You’re better off with fewer papers
that are more highly cited.
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23.5 Role of a paper in the future

Why are we writing papers? To communicate scientific ideas to people we are not talking
directly to (otherwise we wouldn’t need to write; Fun fact – Plato thought that writing was
bad for knowledge, made us dumber because we didn’t have to keep everything in our brains.
He thought it was better to communicate all knowledge face to face).

23.5.1 reviewer

23.5.2 right after publication

23.5.3 In 3-4 years (scope of your dissertation)

23.5.4 In ten years

The field may have changed considerably. Your work will likely not be directly used but if
you’re lucky its successors will. So you’re presenting

23.6 The structure of a paper

23.6.1 Abstract

23.6.2 Introduction

23.6.3 Related Work

Important detail point: should it be section 2 or section n− 1?
Can you get away with not having RW?

23.6.4 Preliminaries

23.6.5 Experiments/meat of the work

23.6.6 Results/analysis

23.6.7 Conclusion

Should there be future work here?
Maybe.
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23.7 Presenting Your Work

23.7.1 Poster

23.7.2 Talk/Slides

23.8 Is this a defunct model?

• Seems weird to write a paper some times; maybe you only need a readme and a github

• that’s probably true for using something right now. but probably a good idea to know
how to contextualize the model/dataset/whatever being presented.

•

•

•

•

•

•
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